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ABSTRACT 

The implementation of Superpave has led to concerns with volumetric mix design, in 

particular, the minimum voids in the mineral aggregate (VMA) requirements which are based 

exclusively on nominal maximum aggregate size (NMAS). Achieving the minimum VMA 

requirement is one of the most dif^cult tasks in Superpave volumetric mix design. Under 

current specifications, many otherwise sound mixtures are subject to rejection solely on the 

basis of failing to meet the VMA requirement. 

The goal of this research was to validate the existing VMA criterion and to see if 

including additional aggregate factors would improve it. The work was accomplished in 

three phases: a literature review; extensive laboratory testing; and statistical analysis of test 

results. 

The available literature on the development of the minimum VMA criterion is 

sketchy; the relationship was originally presented without supporting research or data and the 

suggestion that it would be modified with experience and test data. The literature review 

also suggested that the tria.xial test was the preferred laboratory test for identifying when a 

mixture transitions from sound to unsound behavior, i.e., becomes plastic. 

The laboratory testing involved triaxial testing with the Nottingham Asphalt Tester of 

36 mixes with different aggregate properties. ANOVA and linear regression was used to 

examine the effects of identified aggregate factors on critical state transitions in asphalt 

paving mixtures and to develop predictive equations. 

The results clearly demonstrate that the volumetric conditions of an asphalt mixture at 

the stable/unstable threshold are influenced by a composite measure of the maximum 

aggregate size and gradation and by aggregate shape and texture. The currently defined 

VMA criterion, while significant, is seen to be insufficient, by itself, to correctly differentiate 

sound from unsound mixtures. Based on the laboratory data and statistical analysis, a new 

paradigm to volumetric mix design is proposed that explicitly accounts for several aggregate 

factors (gradation, shape, and texture) in predicting the critical VMA of an asphalt paving 

mixture. 
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CHAPTER 1. INTRODUCTION 

In the analysis and design of asphalt mixtures, the volumetric proportions of the 

asphalt binder, aggregates, and air voids play an important role. In the simplest approach, a 

compacted asphalt mixture could be resolved into the individual volumes of the mineral 

aggregate, the asphalt binder, and air voids as shown in Figure 1. However, as shown in the 

figure, some of the asphalt binder is inevitably absorbed into the aggregate, and the sum of 

the individual component volumes exceeds the total volume of a compacted asphalt mixture. 

As a result, two secondary volumetric parameters are conventionally used: 

1. Voids in the mineral aggregate (VMA), which is the combined volume of air 

voids and effective (non-absorbed) asphalt binder, and 

2. Voids filled with asphalt (VFA), which is the ratio of the volume of effective 

binder to the VMA. 

The three volumetric parameters of air voids, VMA, and VFA have been identified as 

significant indicators of mix performance. Excessive air voids, VFA, and inadequate VMA 

suggest potential durability problems. Insufficient air voids or excessive VFA indicate 

potential rutting problems. In Superpave, these volumetric properties are considered so 

important that a volumetric mix design protocol was established with limits on all three 

parameters. 

The implementation of Superpave has led to concerns with volumetric mix design, in 

particular, the minimum VMA requirements which are based exclusively on nominal 

maximum aggregate size (NMAS). This research seeks to examine the premise that VMA is 

indeed a valid critical parameter, and that the sole aggregate factor affecting the magnitude of 

critical VMA is the NMAS. 

Rationale 

In 1959, Dr. Norman W. McLeod first proposed the relationship between minimum VMA 

and NMAS for dense graded mixtures shown in Figure 2 (/). McLeod believed that mixes 

plotting in the gray area would be deficient in asphalt binder or air voids, and should not be 

expected to perform well. He felt that mixes plotting above the gray area would perform 

satisfactorily. McLeod suggested the relationship 
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without presenting the research or data from which it was derived and stated it was "... 

subject to modification as further experience and additional test data are accumulated" (pg. 

103). 

Dr. McLeod's VMA - NMAS relationship was adopted by The Asphalt Institute in 

1962 (2) as a standard requirement of Marshall mix design. Over the 30 years prior to the 

implementation of Superpave, this VMA mix criterion was gradually adopted by several state 

highway agencies. However, as late as 1985, only 16 of 38 states using the Marshall method 

specified a minimum VMA (i). McLeod's home province in Canada, Ontario, made 

significant changes to reflect the effects of aggregate gradation in 1978 {4). In spite of this, 

the Strategic Highway Research Program (SHRP) researchers adopted McLeod's suggested 

relationship for inclusion in Superpave where it has become the primary control of aggregate 

gradation (5). The Superpave VMA requirements are listed in Table 1. The implementation 

of Superpave has brought significant awareness of, and renewed focus on, how this minimum 

VMA requirement impacts mix design. 

Table 1 Superpave VMA Criteria 

NMAS 
Specified (minimum) 

VMA (%) 
9.5 mm 15.0 
12.5 mm 14.0 
19.0 mm 13.0 
25.0 mm 12.0 
37.5 mm 11.0 

In Superpave, meeting McLeod's minimum VMA requirement is a deciding factor in 

whether or not an aggregate blend can be used. In recent years, some researchers have 

presented concerns that these minimum VMA requirements are too restrictive and may rule 

out economical mixes with acceptable performance properties (6). Others point out that 

evaluating and selecting the aggregate gradation to achieve VMA is the most difficult and 

time-consuming step in the Superpave mix design process (7). Some favor replacing or 

augmenting it with an asphalt film thickness specification (6, 8-9). Others suggest it is not 

applicable to all asphalt mixtures and propose refinements to it (70). 
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The definition of minimum (or critical) VMA adopted by Superpave is dependent 

only upon McLeod's suggested relationship to NMAS without regard to other significant 

aggregate-related properties. In practice, mix designers target the required minimum VMA, 

even for mixtures that might not be considered dense-graded. It appears reasonable to 

examine the effects of aggregate-related factors on critical VMA and to seek to expand and 

refine the McLeod/Superpave relationship. 

Two essential steps must be completed prior to any investigation into aggregate-

related factors of critical VMA. First, a practical and credible means must be found to 

identify a state of critical VMA in a laboratory mixture, or to identify the volumetric 

parameters of a mixture as it transitions from sound to unsound behavior. Second, the 

aggregate characteristics most likely to influence the critical VMA threshold must be 

identified. 

Objectives 

The research documented in this dissertation examines the McLeod/Superpave 

minimum VMA requirement based on NMAS that differentiates sound and unsound mixes. 

The primary objectives of this research are: 

1. To review the published literature for laboratory methods of identifying critical 

transitions in asphalt paving mixtures. 

2. To review the history and development of the McLeod/Superpave VMA vs. NMAS 

relationship. 

3. To find published research results that address the effects of other aggregate-related 

factors on critical state transitions in asphalt paving mixtures. 

4. To establish a laboratory method by which the transition of an asphalt paving mixture 

from sound to unsound behavior may be credibly identified and measured. 

5. To use that method to examine and validate the McLeod/Superpave VMA vs. NMAS 

relationship. 

6. To use that method to identify and to evaluate statistically the effects of several 

aggregate-related factors on the critical VMA of such mixtures. 
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7. To derive a predictive relationship relating critical state (e.g., critical VMA) to 

aggregate-related properties such as NMAS, gradation, shape, and texture. 

Scope 

A total of 36 aggregate blends were used for this research. These blends included 3 

NMAS (19 mm, 12.5 mm, and 9.5 mm); 3 gradations for each NMAS (fine, dense, and 

coarse), and four aggregate blends: 

1. Manufactured - Each gradation is 100 percent crushed material. 

2. Natural - Each gradation is 100 percent natural (uncrushed) material. 

3. 50-50 Blend - Each gradation is 50 percent manufactured - 50 percent natural 

on each sieve size. 

4. NCMF (Natural Coarse-Manufactured Fine) - The material passing the 

4.75 mm sieve was 100 percent manufactured and the material retained 100 

percent natural. The coarse (natural) aggregate was washed to ensure that the 

p0.075 mm material was obtained entirely fi-om the manufactured aggregates. 

Replicate specimens at 5 asphalt contents (4,5,6,7 and 8%) were fabricated and tested 

in the Nottingham Asphalt Tester (NAT) for each of the 36 blends. From the NAT results 

and the volumetric properties, the critical VMA for each mix was determined. These values 

were then analyzed using ANOVA and linear regression to examine the effects of the 

aggregate-related factors on critical VMA. 

Definition of Terms 

The following terms and abbreviations are used in this report: 

1. Air voids: the percent by volume of compacted aggregate asphalt mix of air between 

coated aggregate particles. 

2. Voids in the mineral aggregate (VMA): The percent by volume of effective asphalt 

binder plus air voids in a compacted aggregate asphalt mix. 

3. Voids filled with asphalt (VFA): The percentage of VMA filled with asphalt. 

4. Nominal maximum aggregate size (NMAS): One sieve size larger than the first sieve to 

retain more than 10 percent of the aggregate by weight. 
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5. Fineness modulus (FM): The sum of the percentages retained in a sieve analysis divided 

by 100, using standard sieves (0.150 mm, 0.300 nmi, 0.600 mm, 1.18 mm, 2.36 mm, 4.75 

mm, 9.5 mm, 19 mm, and 37.5 mm) 

6. Coarse aggregate percent crushed (CAPC): The percentage of material retained on the 

4.75 mm sieve by weight with two or more crushed faces. 

7. Fine aggregate percent crushed (FAPC): The percentage of material passing the 4.75 mm 

sieve by weight with two or more crushed faces. 

Organization of this Study 

Chapter 2 provides a summary of the literature search and review on the effects of 

aggregate-related factors of critical VMA in asphalt paving mixtures. The third chapter 

briefly sununarizes the materials used in the study; asphalt, fine and coarse aggregates. 

Chapter 4 presents the methodology used in laboratory testing, describing step-by-step the 

testing protocol used and any deviations firom convention. Chapter 5 presents and discusses 

the results obtained from the testing program and statistical analysis. The significant factors 

are identified and predictive equations are developed and evaluated. Chapter 6 presents the 

conclusions of this research and recommendations for its application and further 

development. 
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CHAPTER 2. LITERATURE REVIEW 

The first three objectives of this study were: 

1. To review the published literature for laboratory methods of identifying 

critical transitions in asphalt paving mixtures, 

2. To review the history and development of the McLeod/Superpave VMA 

vs. NMAS relationship, and 

3. To find published research results that address the effects of other 

aggregate-related factors on critical state transitions in asphalt paving 

mixtures. 

Laboratory Methods of Distinguishing Critical State Transitions in Asphalt Paving 
Mixtures 

The critical VMA of an asphalt paving mixture is not commonly determined in mix 

design. Hence no mention of a test protocol or equipment for measuring it could be found in 

the literature. The focus shifted toward finding equipment capable of indicating when an 

asphalt mixture transitioned fi-om sound to unsound, i.e., became plastic. TTiis is essentially 

the same function performed by rutting or permanent deformation test equipment. 

During the SHRP, permanent deformation was the focus of the SHRP A-003A project 

and SHRP report A-415 {II). The SHRP researchers examined a wide variety of test 

methods to find the best performance test for measuring permanent deformation response. 

While distinguishing the critical state transition was not one of their goals, their review and 

discussion of candidate test methods is useful in identifying equipment to determine the 

critical transition of a mixture. 

The SHRP researchers examined and discussed four types of laboratory tests used to 

characterize the permanent deformation response of pavement materials; 

1. Uniaxial stress tests: unconfined cylindrical specimens in creep, repeated, or 

dynamic loading. 

2. Triaxial stress tests: confined cylindrical specimens in creep, repeated or dynamic 

loading. 

3. Diametral tests: cylindrical specimens in creep or repeated loading. 
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4. Potential (new) tests: e.g., simple shear and hollow cylinder tests. 

Of these, based on field simulation and simplicity, they ranked the simple shear test 

(SST) first, the triaxial tests second, and the creep tests third. They believed that the shear 

properties were the most important in rutting and that the SST provided the best means for 

directly measuring the effects of a specific stress state and the dilation characteristics of a 

mix. For distinguishing the critical state transition of a compacted hot-mix asphalt (HMA) 

specimen, the advantages of the SST are not worth the increased cost over the triaxial stress 

test apparatus. 

The goal was to examine the existing and available literature to leam more about the 

triaxial test, test parameters, and the feasibility of using this equipment to distinguish the 

critical state transition. 

Triaxial Testing 

The triaxial test has been used by asphalt technologists since the early 1940s for 

characterizing asphalt mi.xtures. Most of this research was of an exploratory nature due to 

the cost and complexity of the test equipment. However, several influential researchers have 

used the test in a variety of ways. 

Nijboer was one of the first to use the triaxial test for asphalt mixtures. He rejected 

existing test methods as inadequate for measuring plastic properties of asphalt mixtures (/2). 

He recommended against using the Hveem stabilometer since it is a "closed-system" 

meaning the material cannot flow laterally. He recommended using an "open-system" 

triaxial shear test allowing lateral flow. Nijboer developed the triaxial test for bituminous 

mixtures and used it to study the influence of systematic changes in asphalt content, filler, 

£ind ratio of coarse to fine aggregate on resistance to plastic deformation. 

Monismith and Vallerga examined the relationship between density and stability 

using an open-system triaxial test (/5). They used one type of asphalt (3-8% by weight of 

aggregate), one type of aggregate and gradation, and a test temperature of 60 °C. They 

molded specimens using several different compaction schemes (pressure and tamping). Then 

they ran triaxial compression tests, using a lateral pressure of 1-2 bar and applying the 

vertical load at a constant rate of strain of 0.5 in./min. 
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Their test results suggested that during compaction, HMA behaves analogously to a 

cohesive soil in Proctor testing. Figure 3 shows the relationship between bulk specific 

gravity and stress for mixtures with binder contents between 3-7% at 2% strain. The figure 

shows that for binder contents above 5%, there is a maximum density beyond which the 

specimen begins to lose strength. Thus, 5% is the critical asphalt content at which the mix 

transitions from sound to unsound performance. The dashed line is the Hveem design binder 

content (5.6% by weight of aggregate) with compaction achieved by construction and one 

year of traffic. As shown in the figure, one can see that after this time, the mix would have a 

significant loss of stability. 

Pell and Brown stressed the importance of reproducing in situ test conditions in 

laboratory tests and critically reviewed existing test methods (/^. They suggested that the 

repeated load tria.\ial test will overestimate the permanent deformation characteristics of a 

mix relative to in situ conditions. They emphasized the need for direct shear testing to 

supplement repeated load triaxial testing for pavement design. 

Francken used a repeated load triaxial apparatus to determine a phenomenological 

deformation law that could then be used in structural design to limit rutting (/5). Examining 

five different mixes, he found that a threshold condition (dependent on stress and 

temperature) existed that clearly delineated whether or not plastic failure was imminent. 

Brown and Cooper examined a variety of mixes for bases and base courses using 

several tests including Marshall stability, uniaxial and triaxial creep, and the repeated load 

triaxial test (J6). They concluded that Marshall stability test could not be used to distinguish 

the relative deformation resistances of these mixes and stated (pg. 424) that "if a confined 

test is to be used, it is necessary to apply some form of repeated load". 

The SHRP researchers (J J) pointed out that previous research had suggested that the 

repeated load test was more sensitive to mix variables than the creep test. They found that the 

repeated load triaxial test provided a better measure of rutting characteristics than the creep 

test. 

Nunn et al., using the NAT compared the repeated load axial test (both confined and 

unconfined) against wheel-tracking tests of the same materials and found that the repeated 

load test ranked the materials in a similar fashion to the wheel-tracking test (7 7). 
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They found the unconfined test inadequate for evaluating resistance to permanent 

deformation. They recommended that the repeated load test be further evaluated to develop 

standard testing conditions and a precision statement. 

Brown and Scholz also modified the NAT to convert the repeated load axial test into 

a repeated load triaxial test, using a vacuum to apply the confining stress (J8). This approach 

limited the confining stress to 1 atmosphere (roughly 100 kPa) but made the test viable as a 

routine test. They then used the apparatus to examine two porous mixtures with the same 

gradation but different binders at different temperatures and confining stresses. They found 

that confining the specimen emphasized the role of aggregates in resisting permanent 

deformation. 

The History and Development of the Current VMA vs. NMAS Relationship 

In the early 1900s, the most widely used approaches to asphalt mix design focused on 

achieving maximum density or using aggregate surface area and asphalt film thickness to 

determine the optimum asphalt content (J9). Mix designers using the first approach 

combined VMA, air voids, and experience to determine the best asphalt content. Those 

using the second approach combined air voids, the product of surface area and optimum film 

thickness, and experience to determine the best asphalt content. The Hubbard-Field design 

method is an example of the first approach and the Hveem design method an example of the 

second. Because experience was usually the critical factor, regardless of approach, they 

usually resulted in similar mix designs. Usually, the aggregate gradation was determined by 

specification, by locally available materials, or by theoretically "idealized" gradations. 

The 'early' Marshall mix design approach did not have a VMA requirement (20). 

Marshall himself believed "no limits can be established for VMA, for universal application, 

because of the versatile application of bituminous materials to many types and gradations of 

aggregate(pg. 9)". McFadden and Ricketts presented the Corps of Engineers (COE) version 

of the Marshall method for design and field control of paving which used the five parameters 

shown in Table 2 to determine the design asphalt content (27). The peak values of all 

parameters except flow were averaged to determine the design asphalt content. 
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Table 2 COE Marshall Mix Design Criteria (2/) 

Test Property Requirement 
Stability 500 lbs. (Minimum) 

Flow 20 (Maximum) 
Air Voids, Total Mix 3-5 percent 

VFA 75-85 percent 
Unit weight 

The shift towards a minimum VMA requirement began in the mid-1950s. McLeod, 

in 1955, presented his initial analysis on the voids properties of compacted paving mixtures, 

in which he laid out the basic principles of a minimum VMA requirement (22). His 

argument did not explicitly mention durability; he was concerned that specifications with 

requirements on both air voids and VFA were too restrictive at higher asphalt contents. He 

showed, for absorptive aggregates, that computed VMA and VFA would be wrong unless the 

bulk specific gravity of the aggregates was used in the calculations. 

In 1956, McLeod presented a modified Marshall mix design methodology, which 

listed a minimum VMA requirement of 15 percent (23). He showed graphically (See Figure 

4) that a VFA range of 65-80 percent was unachievable for mixes with asphalt contents 

above 10.5 percent by weight (approximately 20 percent by volume). He provided similar 

design charts that covered the range of aggregate specific gravities from 2.00 up to 3.00 and 

asphalt specific gravities from 0.95 up to 1.11. In all cases, the minimum asphalt content 

required would be at least 4 percent by aggregate weight, plus any absorbed asphalt. At a 

typical aggregate specific gravity of 2.65 and asphalt specific gravity of 1.01, McLeod's 

design charts specify a minimum aspheilt content of 4.5 percent. McLeod believed that the 

physical test limits would broaden the range of acceptable aggregates, lower the cost of 

bituminous paving mixtures and provide satisfactory paving mixtures with respect to 

stability, voids, durability, etc. 

The following year, McLeod again stated his case for using the bulk specific gravity 

and effective asphalt content for volumetric analysis of the mixture (24). He concluded that 

if the compacted paving mixture was restricted to 3-5 percent air voids, requiring a minimum 

VMA (15 percent) was less restrictive than requiring a VFA range of 75-85 percent. More 

importantly, he suggested that the VFA requirement would allow a pavement to be 
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constructed with 3.76 percent asphalt, which he felt was too low for durability. 

The minimum VMA requirement would ensure at least 4.5 percent asphalt and provide 

adequate durability. McLeod observed that Canadian aggregates typically were too densely 

graded to provide the required VMA. 

Also in 1957, Lefebvre re-emphasized the importance of minimum VMA (25). 

Aware of the difficulty of achieving 15 percent VMA and 3-5 percent air voids, he 

investigated the influence of the principal fractions of the mineral aggregate; coarse 

aggregate, fine aggregate, fine sand, and mineral filler on the performance of the paving 

mixture. He found that the fine aggregates were the most critical component, controlling the 

VMA and contributing to stability. 

In 1959, McLeod suggested the currently used method of using VMA and air voids 

requirements in designing pavement mixtures (7). In place of his previously held 

requirements of 15 percent minimum VMA, he related minimum VMA to NMAS. Figure 1 

shows McLeod's suggested relationship. He warned that the minimum VMA requirements 

were subject to modification as further experience and additional test data were accumulated. 

Campen, et al. (1959) emphasized that asphalt film thickness, not VMA was essential 

to mixture durability (26). VMA is independent of the surface area of the aggregate. They 

presented data showing that two aggregate blends could have identical VMA and yet one 

could have twice the surface area or film thickness as the other. At the same time, they found 

that the surface area did not indicate the asphalt content required for minimum VMA. 

Increased surface area requires more asphalt, but there is no direct proportional relationship. 

They prescribed film thicknesses in the range of 6-8 microns as producing the most desirable 

paving mixtures. 

The Asphalt Institute incorporated a new density-voids analysis, which accounted for 

asphalt absorption, into the Marshall mix design method in its 1962 MS-2 (2). VFA, 

previously a Marshall method design parameter in earlier editions, is not mentioned. No 

rationale for dropping VFA is presented. McLeod wrote an appendix in MS-2 presenting the 

inclusion of a minimum VMA requirement into the mix design process. 
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Hudson and Davis described an arithmetical method for computing VMA from the 

aggregate gradation, using factors for the ratio of percent passing one sieve divided by the 

percent passing the next smaller sieve (/9). Their procedure differentiated between rounded 

and angular aggregate. They believed that their arithmetic method of computing VMA 

would allow the mix designer to estimate design asphalt content, if McLeod's chart (Figure 

2) was used. 

McLeod discussed the trend of modifying paving mixtures with rubber or asbestos to 

increase durability (27). As an alternative, to improve durability, he proposed using a 

conventional (unmodified) asphalt binder but requiring 2-3 percent more VMA than the 

values shown in Figure 2. He demonstrated that the VMA value of a dense graded paving 

mixture essentially controls the quantity of asphalt that can be incorporated into the mixture. 

Also, he argued that VMA should be determined through measurements of compacted 

mixtures; it cannot be determined from aggregate test properties alone. He offered several 

methods to increase VMA; most importantly using crushed angular aggregates. 

Field presented the results of a study investigating the minimum VMA criterion, the 

accuracy of the test, and examining alternative approaches (4). He pointed out that the 

Ontario Ministry of Transportation and Communications (MTC) had supplied acceptable 

mixes that did not meet the required minimum VMA. The MTC was changing its 

requirements to those shown in Table 3, where it must be noted that the maximum size is the 

same as the Superpave NMAS. 

Field also discussed four alternative approaches to using minimum VMA in getting 

mix durability: 

1. A VFA requirement, 

2. The surface area method, 

3. The centrifuge kerosene equivalent (CKE) test, and 

4. Visual observation of coatability. 

A VFA requirement of 75-85 percent was ruled out because it would allow mixes with very 

low VMA and very low asphalt contents to be used. The surface area method provided 

mixes with average design asphalt contents 1.2 percent lower than those obtained using the 

VMA criterion. So, despite good laboratory test properties (except low VMA!) and 
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Table 3 Ontario Ministry of Transportation and Communications Modification to 
VMA Requirements {4) 

Percent Pass NMAS (mm) 
Mix Tyjie 4.75 mm 

* (By Mass) 2.36 4.75 9.5 13.2 16.0 19.0 26.5 

HL-2 21 18.0 16 
HL-1 40 13.5 13.0 12.5 11.5 
HL-3 45 14.0 13.5 13.0 12.0 
HL-4 50 14.5 14.0 13.5 12.5 
HL-5 55 15.0 14.5 14.0 13.0 
HL-6 60 15.5 15.0 14.5 13.5 
HL-8 65 16.0 15.5 15.0 14.0 

Additional notes: 

1. The VMA shown above is for 3'/4 % voids 

Reduce the VMA shown above by amount of voids set less than 3!4 % 

Increase the VMA shown above by amount of voids set more than 3/4 % 

2. A design mix must have at least a moderate to moderately rich asphalt coating appearance 

on aggregate particles before compaction. 

* 3. When the difference between the bulk relative density of the retained 4.75 mm material and 

the bulk specific gravity of the pass 4.75 mm material is greater than 0.3, then the percent 

pass 4.75 mm must be on a volume basis. 

no construction or performance problems, because of conceptual problems, the method was 

deemed unacceptable. The CKE approach was found unsatisfactory because it is "lengthy, 

tedious, subject to many errors, and not realistic." Using visual observation for coatability 

was deemed acceptable based on past projects where it had been used. The criteria involved 

making sure (1) the loose mix was moderately rich with respect to asphalt, (2) the compacted 

test specimen was moderately rich to rich in appearance, and (3) the aggregate particles were 

well coated with asphalt. He concluded that the minimiun VMA requirement based on bulk 

specific gravity was the best method of establishing proper asphalt content for durability. 

Field also recommended follow up performance studies be conducted on pavements with 

VMA and void contents below the design criteria to provide the necessary experience and 

confidence. 
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Kandhal and Koehler reported there were still problems with the VMA criterion in 

1985 (i): 

"The VMA is considered to be the most important mix design parameter which 

affects the durability of the asphaltic concrete mix. High VMA values allow enough 

asphalt to be incorporated into the mix to obtain maximum durability without the mix 

flushing. Additionally, such mixes have the following advantages compared to low 

VMA mixes: 

1. Lower stiffness modulus at low temperatures. This is helpful in 

minimizing the severity of thermal and reflection cracking. 

2. Lower susceptibility to variations in asphalt and fines content during 

production. Such variations can cause the mix to be too brittle or too rich. 

Unfortunately, only 16 of 38 states using the Marshall method specify a minimum 

VMA. Of these 16 states, only seven use the effective asphalt content (total asphalt 

minus the asphalt absorbed by the aggregate) to calculate the realistic VMA value, as 

recommended by the Asphalt Institute. If the effective asphalt content is not used, the 

calculated VMA values are not reliable especially when the mix contains an 

absorptive aggregate" (pg. 297). 

Foster reviewed the use of voids in mix design and specifications (25). While 

acknowledging McLeod's explanation of VMA as providing "the desirable conditions for a 

good asphalt pavement" he questioned the minimum requirement of 15 percent VMA. He 

reviewed McLeod's 1956, 1957, and 1959 papers and Lefebvre's 1957 paper and pointed out 

that none report actual pavement VMA or performance data in support of the recommended 

criteria. Foster reported that, as of 1985, seventeen states were using VMA in their mix 

designs. He compared pavement performance data from several projects and his data is 

presented graphically in Figiu-es 5 and 6. 

Figure 5 presents, graphically, the volumetric mix data from traffic tests that the COE 

used to develop their Marshall design criteria. The data clearly shows that 3-5 percent air 

voids and that a VFA in the range of 68-77 percent will result in satisfactory pavements. The 

VMA criterion shows that a minimum of 14 percent is necessary to distinguish the 'almost 

plastic' pavements, but does not break out the 'almost brittle' pavements. 
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Figure 6, shows graphically, the volumetric mix data from 18 experimental overlays 

on Nebraska highways from 1961-1972. The rings differentiate the different mix types; 

nominal maximum size was (primarily) 19.0 mm (Va in.). The data clearly show that a VFA 

criterion of 68-83 percent (approximately) will result in fair or good pavements. The VMA 

criterion is ineffective at distinguishing pavement performance in this data. 

Huber and Heiman examined 9 test sites in Saskatchewan to see if mix design 

characteristics differentiated pavements that performed well from those that rutted badly 

(29). For the mix characteristics examined, they found the threshold values listed in Table 4. 

If 4 percent air voids are taken as a design target, then their VMA and VFA criteria limit 

possible designs to a single point (Air Voids = 4%, VMA =13.5%, and VFA =70%). They 

concluded that asphalt content and VFA were the most basic parameters that effect rutting, 

with VFA including the effects of both air voids and VMA. 

Table 4 Observed Threshold Values for Mix Design Characteristics (29) 

Parameter Threshold Value 
Air Voids 4% minimum 

Voids in the Mineral Aggregate 13.5% minimum 
Asphalt Content 5.1% maximum 

Voids Filled with Asphalt 70% maximum 
Fractured Faces 60 % minimum 

Marshall Stability 
Hveem Stability 37% minimum 

McLeod re-emphasized his earlier arguments for using VMA in mix design (30). 

Aware of Huber and Heiman's findings, he acknowledged that there was apparent 

justification for using air voids and VFA as design criteria. However, he felt using a percent 

air voids and VFA criteria of 75-85 percent would not be a practical specification for 

production. He further argued against placing requirements on all three volimietric 

parameters, air voids, VMA, and VFA, showing that they overlap. As a practical matter, he 

suggested that the only reasonable criterion is to use the minimum VMA based on NMAS 

and air voids requirement. He mentions that in Ontario during the OPEC oil crisis of 1973, 

the VMA requirements were significantly reduced as a cost saving measure, but quickly 

halted due to an epidemic of poor pavements and raveling problems. 
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Huber and Shuler focused on the relationship between VMA and the maximum 

density line (MDL) (31). They concluded that the MDL needed to run from the origin to the 

100 percent passing maximum sieve size. They tried to relate distance from the MDL to 

VMA but could find no general rule to ensure minimum VMA, because of the influence of 

aggregate angularity and surface texture on VMA. They also recommended against 

comparing gradations with large differences in material passing the 0.075 mm sieve. 

Cominsky, Leahy, and Harrigan present and discuss the Superpave Level 1 mix 

design that was developed during the SHRP Program (5). Based on the recommendations of 

a panel of experts using the Delphi method, the VMA requirements were absorbed into 

Superpave. The panel's final rating of the various aggregate and asphalt-aggregate mixture 

characteristics for inclusion into the specification is shown in Table 5. As can be seen, the 

panel strongly recommended air voids and VMA but was essentially neutral on VFA, 

dust/asphalt ratio, and film thickness. 

In 1994, the Asphalt Institute re-introduced a VFA criterion into Marshall mix design, 

changed the design air voids to 4 percent, and added a table of VMA requirements depending 

on air voids and NMAS (32). The stated purpose of the VFA criterion was to limit the 

maximum values of VMA and asphalt content. 

Aschenbrenner and MacKean examined 101 mix designs to determine which MDL 

worked best for predicting VMA, achieving the best correlation with the Superpave 

definition (33). They report that in 1993, the first year the Colorado Department of 

Transportation specified a minimum VMA, the average mix design asphalt content increased 

by 0.46 percent. 

Kandhal and Chakraborty set out to reexamine the rationale behind the minimum 

VMA requirements currently being used and to establish an optimum film thickness for mix 

durability (8). Like Foster, they could not find any significant rational data correlating 

pavement performance with the currently specified minimum VMA values for HMA mix 

design. They tested mixtures with six effective asphalt film thicknesses, aged both short and 

long term, and they tested specimens for resilient modulus and tensile strength. They also 

tested the recovered binder for penetration, viscosity, complex modulus, and phase angle. In 

their studies, they found that asphalt film thickness correlated well with resilient modulus. 
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Table 5 Average Ratings of Asphalt-aggregate Mix Characteristics by SHRP Expert 
Task Group (5) 

"Best" Measurement 
Rice specific gravity 

Bulk specific gravity of 
aggregate (Gsb) 
None identified 
None identified 
MS-2 Procedure 

Characteristic Rating* Standard Deviation 
Air Voids 6.77 0.44 

VMA 6.15 0.90 

VFA 4.00 1.68 
Dust/Asphalt Ratio 4.46 1.85 

Film Thickness 3.31 1.89 

* Scaled ratings: 1 — very strongly disagree 

2 — strongly disagree 

3 — disagree 

4— Neutral 

5 — agree 

6 — strongly agree 

7 - very strongly agree 

and they recommended an average film thickness of 9-10 microns for specimens compacted 

at 8 percent air voids. Interestingly enough, a 9 micron film thickness at 4 percent air voids 

would require a minimum VMA of 15.6 percent, 1.6 percent higher than the Superpave 

specification. 

Hinrichsen and Heggen also proposed using average film thickness in mix design (6). 

They provided equations, which used the aggregate gradation and volumetric properties to 

determine the proper VMA for each mix design uniquely. To do this, they took the standard 

film thickness equation, assumed a standard film thickness, and back-calculated the amount 

of asphalt required providing this film thickness. Using volumetric relations, they computed 

the minimum VMA allowable with this asphalt content and a target air voids. They provided 

information that showed that mixes based on minimum VMA were not always the best in 

terms of performance and economics. They questioned the use of "rigid" minimum VMA 

specifications, showing that there is considerable variability in the tests performed to 

determine VMA, resulting in a standard deviation of 1.3 percent for VMA. 
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Anderson and Bahia found achieving VMA was the most difficult and time 

consuming step in Superpave volumetric mix design (7). They analyzed 128 trial gradations 

from 32 mix designs performed by The Asphalt Institute from 1992-96 to determine if they 

could make any recommendations towards selecting an aggregate gradation. Their analysis 

agreed with prior researchers that VMA is dependent on more than just aggregate gradation. 

They found that current methods for increasing VMA were not absolutely effective. Their 

best recommendation to meet VMA requirements was to develop an S-shaped gradation 

curve (r^ = 0.58) or to use the sum of the distances from the MDL (r^ < 0.20) to meet the 

VMA requirements. 

Kandhal, Foo, and Mallick assumed asphalt mix durability was dependent on film 

thickness (9). Based on average film thickness, tliey found the current minimum VMA 

requirements inadequate for ensuring mix durability. They concluded that it penalized coarse 

graded mixes with low VMA but adequate film thickness. They recommended dropping the 

minimum VMA requirement in place of a minimum average film thickness of 8 microns. 

While they could not find the background research data on which The Asphalt Institute 

surface area factors are based, they felt they should still be used. 

Mallick, et al., point out that McLeod used relatively fine-graded mixtures to develop 

his relationship (/O). Examining 9.5 mm, 12.5 mm, 19.0 mm, 25.0 mm, and 37.5 mm 

NMAS mixes, they found on average that a 5 percent increase in percent passing the 2.36 

mm sieve would increase the VMA by 0.4 percent. They suggest that a more rational way of 

specifying VMA would be to specify VMA by the percent passing the 2.36 mm sieve. Their 

recommended design VMA requirements for dense-graded mixes are presented in Table 6. 

Effects of Other Aggregate-related Factors on Critical State Transitions 

In 1957, McLeod summarized the principal factors influencing VMA as follows {24)\ 

1. For any given particle size, the Fuller or Weymouth curve should produce 

maximum density. 

2. Moving off the maximum density curve (To either side!) should provide less 

density and more VMA. 
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Table 6 Proposed Minimum VMA based on NMAS and Percent Passing 2.36 mm {10) 

9.5 mm 12.5 mm 19 mm 25 mm 37.5 mm 

P2.36* VMA P2.36 VMA P2.36 VMA P2.36 VMA P2.36 VMA 

67-62 16.6 58-53 15.8 49-44 14.0 45-40 13.8 41-36 13.6 

62-57 16.2 53-48 15.5 44-39 13.7 40-35 13.4 36-31 13.2 

57-52 15.7 48-43 15.2 39-34 13.4 35-30 13.1 31-26 12.8 

52-47 15.4 43-38 14.9 34-29 13.1 30-25 12.7 26-21 12.2 

47-42 15.0 38-33 14.5 29-23 12.7 25-19 12.3 21-15 11.7 

42-37 14.6 33-28 14.1 

37-32 14.2 

* P2.36 is the percent by weight of aggregate finer than 2.36 mm 
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3. Using slightly more (or less) fine aggregate than that of the maximum density 

curve should ojsen space between the coarser particles resulting in higher 

VMA. 

4. Using appreciably less fine aggregate will result in an "open graded" mixture 

with relatively high VMA. 

5. If the quantity of fine material ranges from slightly less to appreciably more 

than the Fuller curve, the VMA in the resulting dense graded mixture will 

increase steadily (slowly) but so will the required asphalt content such that the 

air voids will still be in the range of 3-5 percent, 

6. Choosing to add or reduce fine aggregate depends on (1) required pavement 

surface texture, (2) whether or not the resulting pavement would be durable 

enough for local climate and traffic conditions, £md (3) relative cost of coarse 

and fine aggregates. 

7. Mineral filler can rapidly increase VMA. 

Lefebvre investigated the influence of the principal fractions of the mineral 

aggregate; coarse aggregate, fine aggregate, fine sand, and mineral filler on the performance 

of the paving mixture (25). He found that the fine aggregates were the most critical 

component, controlling the VMA and contributing to stability. His recommendations 

included using a moderately high percentage of fine aggregate containing a small percentage 

of fine sand. The fine aggregate should be angular, with rough surface texture, and suitably 

graded. The coarse aggregates, while good for stability, are bad for VMA particularly if 

mineral filler is present. Mineral filler was not recommended, because it fills voids and takes 

the place of bitumen, and may be detrimental to durability. 

Vallerga examined how aggregate characteristics of size, shape, and surface 

roughness effect the stability of asphalt paving mixtures (34). Based on triaxial testing, he 

concluded that the most important aggregate characteristic was surface roughness, and 

believed that size and shape were less important than generally believed. 

Czimpen, et al., stressed that a satisfactory mixture is one where the aggregate 

contains enough voids to permit the addition of sufficient asphalt to provide comparatively 
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thick films without filling all the voids in the aggregate (26). They showed data suggesting 

that engineers typically use a high coarse aggregate content to control the voids. 

Hudson and Davis felt VMA depended on the following conditions (J9): 

1. Particle arrangement or degree of compaction, 

2. Relationship between sizes of aggregate particles, in particular the ratio 

between percents passing adjacent sieves, 

3. The range of size between fine and coarse materials, and 

4. Aggregate shape. 

Field discussed how the MTC adjusted The Asphalt Institute's standard VMA 

requirement (4): 

1. For aggregates near the borderline acceptable VMA, if the percent passing 

4.75 mm sieve was increased by 5 percent, the required VMA increased by 

0.5 percent. 

2. For aggregates of good VMA with desirable mix characteristics - cohesion, 

stability, and coatability, if the passing 4.75 mm sieve was increased by 5 

percent, the required VMA increased by 0.8 percent. 

3. The minimum VMA should correspond to a minimum air voids content, e.g., 

if VMA of 15 percent is required for air voids of 5 percent, then if design air 

voids are decreased, the minimum VMA should decrease correspondingly. 

Aschenbrenner and MacKean examined 24 laboratory mixes to study the effects of 

four variables on VMA (33): 

1. Gradation, 

2. Percent passing 75 ^m sieve (filler), 

3. Size distribution passing 75 nm sieve, and 

4. The fine aggregate angularity. 

They found that gradation played a role in influencing VMA, but got such poor 

correlation that VMA could not effectively be predicted from gradation. The percent filler 

significantly effects VMA, in particular for gradations on the fine side of the MDL. Lower 

percent passing 75 nm sieve increased VMA, higher reduced VMA. They recommended that 

the fine aggregate be kept well off the MDL. Their results examining size distribution 
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passing the 75 fim sieve were inconclusive. They found aggregate angularity to substantially 

affect the VMA, with crushed aggregates providing more VMA and rounded aggregates less. 

The fine aggregate angularity was more influential for coarse mixes or mixes following the 

MDL than for mixes on the fine side of the MDL. 

Epps and Hand examined Superpave mixes for mixture sensitivity to asphalt content 

and percent passing 75 ^un sieve, and found the coarse mixtures to be extremely sensitive to 

small changes in both. They list the following aggregate-related factors as contributing to 

mixture sensitivity (35): 

1. Rounded or sub-rounded aggregates; 

2. Aggregates with smooth surface texture; 

3. An aggregate blend with a high fine aggregate fraction; 

4. An aggregate blend with a high natural sand content; and 

5. Aggregate blends with a high to intermediate sand content. 

Summary of Literature Review 

The purpose of the literature review was threefold: (1) to examine available 

laboratory tests for determining the critical transition from sound to unsound mixture, (2) to 

review how the minimum VMA criterion currently specified in Superpave developed (and 

any proposed refinements), and (3) locate any information on other aggregate-related factors, 

e.g., gradation, particle shape, or texture. 

Only one paper, by Monismith and Vallerga (J3), presented an approach that clearly 

defined the critical asphalt content at which a mix would transition from a sound to unsound 

condition. They used the triaxial test to evaluate mixture performance. The SHRP 

permanent deformation research suggests that a variety of laboratory tests, in addition to the 

triaxial test, could be used for determining the critical state transition. Considerable research 

has been performed using the triaxial test, however, as indicated by the literature reviewed, 

the test procedures and conditions have not been standardized. 

The available literature on the development of the minimum VMA criterion is 

sketchy; McLeod presented his relationship without the research or data from which it was 

derived. He anticipated that it would be modified with experience and test data; the 
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implementation of Superpave has renewed focus on how the minimum VMA requirements 

impact mix design. 

Several authors have pointed out and discussed problems with the VMA criterion in 

Superpave volumetric mix design and a few have proposed changes. These changes have 

centered on modifying the minimum VMA criterion to differentiate coarse and fine 

gradations. A few have argued for replacing the minimum VMA vs. NMAS criterion with a 

minimum asphalt film thickness specification. 

Several authors have pointed out aggregate factors other than NMAS that effect 

VMA. These include percent filler, shape, surface texture, percent crushed aggregate, fine 

aggregate angularity, and coarseness of the gradation. Of particular note was the extreme 

sensitivity of VMA to percent filler; one study recommended against comparing gradations 

unless the percent filler was held constant. 
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CHAPTERS. MATERIALS 

Asphalt Binder 

The asphalt selected for this study was a Superpave performance grade (PG) 58-28 

binder supplied by Jebro, Inc., of Sioux City, Iowa. This binder grade is commonly used in 

Iowa for highway projects. The Superpave binder test results for this binder and the 

AASHTO MPl specification requirements are listed in Table 7. 

Table 7 Superpave Test Properties of Asphalt Binder used in Laboratory Testing. 

Test Results Specification Requirements 
Original Properties 

Flash Point 230 ®C 
Temperature, "C 
Rotational Viscosity, 0.247 
135 °C 
Dynamic Shear, @ 10 1.024 @ 58 "C 
rad/s kPa 

Rolling Thin Film Oven (RTFO) Residue 
Mass Loss, % 0.248 
Dynamic Shear, @10 2.515 @ 58®C 
rad/s kPa 

Pressure Aging Vessel (PAV) Residue 
Dynamic Shear, @ 10 4253 @ 19°C 
rad/s kPa 
Creep Stiffness @ 60 s, 239@-18''C 
MPa 
m-value 0.303 @ -18 °C 

3.0 maximum 

1.0 minimum 

1.0 maximum 
2.2 minimum 

5000 maximum 

300 maximum 

0.300 minimum 

Aggregates 

Two local sources of aggregates used to construct hot-mix asphalt pavements were 

used in the study. The manufactured aggregates (both coarse and fine) were 100 percent 

crushed limestone from Ames, lA was supplied by Martin-Marietta Aggregates. Automated 

Sand and Gravel, of Fort Dodge, lA provided both the coarse and fine natural aggregates 

used in this study. 
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Aggregate Blends 

The two sources of aggregates were sieved and recombined into the four aggregate 

blends shown in Table 8. Formally defined, the four blends are: 

1. Manufactured - Each gradation is 100 percent crushed material (coarse and fine). 

2. Natural - Each gradation is 100 percent natural material (coarse and fine). 

3. 50-50 Blend - Each gradation is a blend of 50 percent manufactured, 50 percent 

natural on each sieve size. 

4. NCMF (Natural Coarse-Manufactured Fine) - The material passing the 4.75 mm 

sieve was 100 percent manufactured and the material retained 100 percent natural. 

The coarse (natural) aggregate was washed to ensure that the p0.075 mm material 

was obtained entirely from the manufactured aggregates. 

It was believed that these four blends would provide enough information to evaluate the 

effects of gradation and shape for both the fine and coarse aggregates. 

Table 8 Aggregate Blends used in Laboratory Testing 

Coarse Fraction 
(% retained on 4.75 mm sieve) 

Fine Fraction 
(% passing 4.75 mm sieve) 

Blend 
1. Manufactured 
2. Natural 
3. 50-50 
4. NCMF 

Manufactured 
100 

50 

Natural 

100 
50 
100 

Manufactured 
100 

50 
100 

Natural 

100 
50 

Aggregate Gradations 

Three NMAS, 19 mm, 12.5 mm, and 9.5 mm, were selected to represent the asphalt 

mixes commonly used in Iowa. For each NMAS, a fine, dense, and coarse aggregate 

gradation was developed as listed in Table 9 and shown in Figures 7-9. Because the 

literature review suggested against comparing gradations with different percent filler, the 

filler was held constant for all gradations. 
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Table 9 Aggregate Gradations used in the Study 

Sieve Percent Passing 
Size 9.5 mm NMAS 115 mm NMAS 19.0 mm NMAS 
(mm) Fine Dense Coarse Fine Dense Coarse Fine Dense Coarse 

19.0 100 100 100 100 100 100 100 100 100 
12.5 100 100 100 95 95 95 87 74 65 
9.5 95 95 95 86 73 65 78 65 55 
4.75 80 65 55 65 54 45 59 47 40 
2.36 60 47 36 50 39 32 45 34 28 
1.18 45 34 25 37 29 22 33 25 20 

0.600 32 26 17 27 21 15 25 18 14 
0.300 22 19 12 18 15 10 18 13 10 
0.150 9 9 9 9 9 9 9 9 9 
0.075 4 4 4 4 4 4 4 4 4 
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Figure 7 9.5 mm NMAS Gradations used in Study 



www.manaraa.com

12.5 mm NMAS 

' # 

»I4 

ci Control Points 

- - - Maximum 
Density Line 

—•- 'Fine 

A Dense 

Coarse 

75 2.36 12.5 19 

Sieve Size Raised to 0.45 Power 

Figure 8 12.S mm NMAS Gradations used in Study 
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Figure 9 19 mm NMAS Gradations used in Study 



www.manaraa.com

36 

Aggregate Properties 

In Superpave, two categories of aggregate properties are required: consensus 

properties and source properties. The consensus properties, which measure critical aggregate 

characteristics necessary to achieve good performance, require the following tests: 

1. Coarse aggregate angularity, 

2. Fine aggregate angiilarity, 

3. Flat, elongated particles, and 

4. Clay content. 

The source properties, which are also important to mixture performance but source 

specific and related to the inherent quality of the parent material, require the following tests: 

1. Toughness, 

2. Soundness, and 

3. Deleterious materials. 

The consensus tests were performed on both types of aggregates. Since both sources 

of aggregates are used in hot-mix asphalt production, the source tests were not performed. 

Superpave Consensus Properties 

Coarse Aggregate Angularity 

The test specified in Superpave for determining the percentage of fractured particles 

in the coarse aggregate is ASTM D5821. The test is performed on aggregates retained on 

the 4.75 mm sieve. A fractured particle is defined as a particle with one or more crushed 

faces, with ASTM specifying a crushed section as having a minimum crushed area of 25% of 

the maximum cross sectional area of the particle. The results for both types of aggregates are 

shown in Table 10. 

Table 10 Percentage of Fractured Particles in the Coarse Aggregates used in Study 

Aggregate Fractured Faces (% mass) 
Fractured Faces 12.5 mm 9.5 mm 4.75 mm 

Natural 1 or more 0 0 0 
2 or more 0 0 0 

Manufactured 1 or more 100 100 100 
2 or more 100 100 100 
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For the natural aggregates, most of the material had obviously been fractured at one 

time but had been subsequently worn smooth. There were no freshly fractured faces. All of 

the manufactured aggregate had two or more fractured faces. 

Flat or Elongated Particles in Coarse Aggregate 

The test specified in Superpave for determining the percentage of fractured particles 

in the coarse aggregate is ASTM D4791. Flat and elongated particles impede compaction 

and consequently affect strength. This test uses a proportional caliper device to determine 

whether each particle exceeds a specified ratio of maximum to minimum dimension ratio. 

The results for both types of aggregates are shown in Table 11. 

Table 11 Percentage of Flat and Elongated Particles in the Coarse Aggregates used in 
Study 

Aggregate Flat and elongated particles (% mass) 
12.5 mm 9.5 mm 4.75 mm 

Natural 3:1 0.5 0.5 2.3 
5:1 0 0 0 

Manufactured 3:1 1.5 1.2 1.3 
5:1 0 0 0 

Both the natural and manufactured aggregates had a few flat particles but none that 

were elongated. 

Fine Aggregate Angularity 

Superpave uses the uncompacted void content of fine aggregate test (ASTM CI 252), 

method A, to measure fine aggregate angularity. In this test, fine aggregate, of a specified 

gradation, is fimneled into a cylinder. The amount that is retained in the cylinder is weighed 

and the voids are computed using the bulk specific gravity of the fine aggregate. This test 

was performed on both types of aggregates and the results obtained are shown in Table 12. 

The results indicate that the manufactured and natural aggregates were significantly different 

in uncompacted void content. 
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Table 12 Fine Aggregate Angularity of Aggregates used in Study 

Aggregate Type Uncompacted Voids 
Manufactured 46.7 

Natural 40.7 

Clay Content 

Superpave uses the Plastic Fines in Graded Aggregates and Soils by Use of Sand 

Equivalent Test (ASTM D2419) test to measure the percentage of clay in the aggregate 

fraction that is finer than the 4.75 mm sieve. For both aggregate sources, the gradation with 

the highest content of material passing the 4.75 mm sieve was used. The results of these tests 

are shown in Table 13 and suggest that both types of aggregates were very clean. Since all 

gradations were combined from the same materials, the other gradations were not tested. 

Table 13 Clay Content Results 

Aggregate Blend Sand Equivalent 
Manufactured 9.5 Fine 95 

Natural 9.5 Fine 91 

Aggregate Specific Gravity 

The aggregate bulk specific gravity is extremely important in volumetric mix designs, where 

it is used to calculate VMA, as shown in the equation below. 

= 100-^2^ 
Gsb 

where Gmb = Bulk specific gravity of the compacted mixture, 

Ps = Aggregate content, percent by total mass of mixture, and 

Gsb = Bulk specific gravity of total aggregate. 

In the study, it was deemed more efficient to measure specific gravity on each sieve 

size separately and then compute the specific gravity for each gradation. Three test methods 

were used to determine aggregate specific gravity: 

1. Specific Gravity and Absorption of Fine Aggregate (ASTM C128) 

2. Specific Gravity and Absorption of Coarse Aggregate (ASTM C127) 
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3. Density of Hydraulic Cement (ASTM C188-89) 

The first two methods are commonly used for aggregates, but the difficulties inherent 

in getting the relatively single-sized sieved material finer than 1.18 mm to an identifiable 

saturated-surface dry condition are considerable. For this reason, ASTM CI88-89, which 

uses a Le Chatelier's flask was used on the 0.60 mm sieve and finer sized aggregates. It must 

be noted that in this test, the aggregates are not given time to absorb water, hence, the results 

are more an apparent specific gravity than a bulk specific gravity. The absorption for the 

natural aggregate averaged 2.7% and the manufactured aggregates averaged 2.4% (both had 

standard deviations of 0.4 %). The single size sieve results for specific gravity are listed in 

Appendix A. The aggregate bulk specific gravities were computed two ways: 

1. Assuming no absorption for the material tested using Le Chatelier's flask, and 

2. Adjusting the apparent specific gravity obtained in Le Chatelier's flask by the 

average absorption of the coarse material to get a bulk specific gravity. 

The computed bulk specific gravities of all 36 blends using both methods is presented in 

Table 14. Close scrutiny of Table 14 shows that assuming no absorption raises the bulk 

specific gravity for all aggregate blends by 0.018 on average, effecting the finer gradations 

more, and the coarse less. The ASTM precision statement on test method C-128 gives an 

acceptable range of 0.032 between two tests, suggesting that either method could be used. 

However, it seems more reasonable to assume that the absorption for the aggregates finer 

than 1.18 mm would be close to that obtained for the coarse material than to assume no 

absorption. 
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Tabic 14 Calculated Specific Gravity for cach Aggregate Blend 

Mix Manufactured Natural NCMF 50-50 

NMAS Gradation Ci • ^sa Gsb*^ Gsa Gsb Gsa Gsb Gsa Gsb 

9.5 mm Fine 2.647 2.620 2.580 2.549 2.632 2.605 2.613 2.584 

Dense 2.628 2.608 2.559 2.536 2.601 2.581 2.593 2.572 

Coarse 2.612 2.597 2.542 2.525 2.577 2.563 2.577 2.561 

12.5 mm Fine 2.631 2.609 2.565 2.540 2.607 2.586 2.597 2.574 

Dense 2.616 2.599 2.554 2.534 2.590 2.573 2.585 2.567 

Coarse 2.604 2.591 2.544 2.529 2.573 2.560 2.573 2.560 

19 mm Fine 2.624 2.604 2.560 2.538 2.599 2.580 2.592 2.571 

Dense 2.608 2.593 2.549 2.532 2.580 2.566 2.578 2.563 

Coarse 2.599 2.587 2.543 2.530 2.570 2.559 2.571 2.558 

* Gsa - Apparent specific gravity obtained in Le Chatelier's flask used for aggregates flner than 1.18 mm sieve without 

considering absorption 

** Gsb - Apparent specific gravity obtained in Le Chatelier's flask used for aggregates finer than 1.18 mm sieve modified to 

account for absorption. 
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CHAPTER 4. METHODOLOGY 

The fourth objective of this dissertation was to establish a laboratory method by 

which the transition of an asphalt paving mixture from sound to unsound behavior may be 

credibly identified and measured. The test equipment selected for identifying the critical 

state transition was the Nottingham Asphalt Tester (NAT) manufactured by Cooper Research 

Technology Limited of Derbyshire, U.K. This equipment, shown in Figure 10, is extremely 

versatile and has come close to being the standard testing device throughout Europe under 

the developing European Standards (EN). The NAT repeated load triaxial (RLT) test is a 

promising new configuration for assessing deformation resistance. 

The laboratory testing consisted of two studies, a pilot study and the main study. The 

pilot study was conducted to gain familiarity with the NAT and to determine the test 

conditions (temfierature, stress regime, duration) that would be used in the main study. 

Pilot Study 

The pilot study was undertaken to ascertain the capabilities and limitations of the 

NAT. Since the RLT apparatus is still a prototype test, standard test specifications are still 

under development. Temperatures of40,45, and SO'C, (104, 113, and 122 °F) were used in 

conjunction with confining pressures of 35, 70, and 100 kPa. Initially, a deviator stress of 

250 kPa was used; this was raised to 300 kPa, the limit of the equipment, when a new source 

of air pressure was installed. Of critical importance was determining the number of cycles to 

be used in each test. The load frequency is fixed at 2 Hz, hence there would be 1800 load 

applications in one hour. Due to the number of specimens to be tested, it was deemed 

imperative that the test be no longer than one hour. It was also necessary to determine the 

conditioning time for a specimen to get to test temperature. The following information was 

learned from the pilot study: 

1. Test conditions of 45 °C (113°F), 17 kPa confining stress, 300 kPa deviator stress, and a 

test duration of 1800 cycles (one hour) would be used. It takes approximately 125 

minutes for the specimens to get to test temperature; therefore 130 minutes was used as 

the conditioning time for the study. 
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Figure 10 The Nottingham Asphalt Tester 



www.manaraa.com

43 

2. The RLT measures vertical strain and computes stiffiiess. There is no measure of 

volumetric strain. 

3. The RLT is compatible with specimens compacted in the Superpave Gyratory Compactor 

(SGC). However, specimens of normal height (115 mm) are the upper limit of the 

equipment as configured and awkward to test. This limits the maximum practical height 

to diameter ratio to about 0.75, which is below the conventionally accepted minimum 

ratio of 1-1 for triaxial testing of asphalt mixtures. 

4. The specimens would not be sawn and polished; however they would be lubricated with 

silicon grease prior to testing as recommended. Figure 11 shows the differences between 

sawn and unsawn specimen. 

5. Based on the conditioning time of 130 minutes and assuming an average time of 10 

minutes to remove and replace test specimens, 5 to 6 specimens could be tested in a 

typical day. 

The conditions used for testing are summarized in Table 15. 

Table 15 Test Conditions used in the Study 

Test Property Test Conditions 
Temperature, 45°C 

Deviator stress, 300 kPa 
Confining stress, 17 kPa 

Number of repetitions 1800 cycles (1 hour) 
Specimen Ends Unsawn, Lubricated 
Preconditioning 2 hours at test temperature 

The awkwardness of testing 115 mm, 4700 g specimens made it desirable to use a 

different size of specimen. Previous research indicated that the density of the SGC 

compacted HMA would not be significantly affected if the specimen height was decreased to 

75 mm, 3375 g (37). To verify this, and examine the effects of this change on NAT testing, 

specimens fabricated from two different mixes were tested using the conditions specified in 

Table 15. Figure 12 shows the size difference between the 4700 and 3375 gram specimens. 

The results are shown in Table 16. 
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Figure 11 Unsawn and Sawn Ends of Compacted Specimens 

Figure 12 Comparison of 4700 g Conventional Superpave Specimen and Smaller 3375 
g Specimen used in Study 
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Table 16 ERiects of Different Specimen Heights 

Specimen Height Bulk Specific Air Voids NAT 
ID (nun) Gravity of Mix (%) )a-strain 
AI 80.2 2.4158 3.9 9895 
A2 112.2 2.4175 3.9 10444 
SI 79.8 2.4669 2.9 7205 
S2 110.2 2.4682 2.8 8072 

Average Change %) 28% 0.06% 8% 

The data in Table 16 supports the claim that the volumetric properties are not effected 

by the reduction in size. For the NAT results, the size reduction reduced accumulated micro-

strain by 8% on average. This implies that small changes in specimen height should not 

effect the determination of the critical transition. 

Main Study 

Laboratory Testing Protocol 

The protocol used for laboratory testing followed AASHTO standards wherever 

possible. However, because there were some deviations from convention, for discussion 

purposes, the laboratory work is broken down into distinct steps: 

1. Batching, 

2. Mixing, Aging, and Compaction, 

3. Pre-NAT Bulk Specific Gravity, 

4. NAT Testing, 

5. Post-NAT Bulk Specific Gravity, and 

6. Theoretical Maximum Specific Gravity. 

The laboratory process is shown graphically in the flowchart shown in Figure 13. 

Batching 

Prior to testing, the aggregates had been dried, sieved, and stored in 20 gallon 

containers. Once a gradation blend was selected, the first step was to determine the quantity 

of filler (material passing the 75 fim sieve) contained in that blend. To do this, a washed 
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4 •/. p0.075 mm? 

Yes 

Save output data 

Mix, age, and compact specimens 
following AASHTO TP4-93 

Batch trial aggregate blends 

Batch aggregate blends following Table 17 

Determine bulk specific gravity of specimens 
following AASHTO TI66-93 

Test in NAT vacuum triaxial apparatus 
1800 cycles of 300 kPa 

Determine bulk specific gravity of specimens 
following AASHTO T166-93 

Determine theoretical maximum specific gravity of 
specimens following AASHTO T209-94 

Figure 13 Flow Chart of Laboratory Testing 
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sieve analysis was performed following AASHTO Tl 1-91, on two 1000 g samples. The test 

results were averaged and if the difference in p0.075 mm material was more than 0.5 percent, 

a third test was performed. 

Once the percent of filler was determined, aggregate for ten specimens (two at each 

asphalt content) were blended as shown in Table 17. The blended aggregates were heated 

in an oven overnight to approximately 160 °C. The asphalt was heated at 147 °C until 

sufficiently fluid for mixing. 

Table 17 Batch Aggregate Weights used in Laboratory Testing 

Asphalt Content (%) Wt. of Blended Aggregate (g) 
4 3240.0 
5 3206.3 
6 3172.5 
7 3138.8 
8 3105.0 

Mixing, Aging, and Compaction 

Mixing, aging, and compaction were performed in accordance with AASHTO TP4-93 

(JS). The viscosity of the binder targeted a mixing temperature of 147 °C and compaction 

temperature of 135 °C. The aggregates were placed into a heated mixing bowl and dry 

mixed by hand. The asphalt was added then the asphalt-aggregate mixture was mixed 

mechanically for 30-45 seconds (until a imiform coating was observed). The mix was then 

transferred to a pan and aged for two hours in an oven at 135''C. After an hour the mix was 

stirred to ensure uniform heating and aging. 

The specimens were compacted to 109 gyrations in the SGC then allowed to cool 

overnight. Some of the "rich" mixes required using two sets of papers in the mold to prevent 

the compacted specimen from sticking to the ram. Once cooled, the bulk specific gravity of 

the compacted specimens was obtained following AASHTO T166-93. The specimens were 

then "air-dried" back to within Ig of their original weight. Volumetric data for all specimens 

tested is tabulated in Appendix B. 
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NAT Testing 

Prior to testing, the specimens were conditioned in the NAT for 130 minutes to 

ensure that they were equilibrated at the test temperature of 45 °C. The NAT requires 

specimen heights to the nearest millimeter, the SGC provides height data to a tenth of a 

millimeter. After checking several specimens with a micrometer, it was decided to use the 

SGC height data and roimd to the nearest millimeter. 

Once the specimens were at test temperature, the platens of the apparatus were coated 

with a thick layer of silicon-teflon grease. The specimen was placed on the bottom platen, 

the rubber membrane slid over the specimen, and secured with an O-ring. The top platen was 

set in place and secured with an O-ring. Then, the jacketed specimen was placed in the 

temperature chamber, and the vacuum hose connected. The vacuum of 17 kPa would draw 

the membrane tight, any wrinkles were smoothed out, and then the apparatus would be 

centered in the load frame, the crosshead adjusted to the correct height, and the linear 

variable displacement transducers (LVDTs) centered for testing. With practice, the 

procedure can be done very quickly, only taking a few minutes. There is a 2-minute period 

of load pre-conditioning prior to the test beginning. After this, the specimen receives 1800 

applications of a 300 kPa load and the accumulated axial strain is measured. 

Once the test is complete, the specimen is carefully removed and allowed to cool to 

room temperature, the platens and membrane are cleaned and wiped dry, and the next test is 

started. NAT data for all specimens tested is in Appendix C. 

Post-NAT Testing 

After cooling, the bulk specific gravities of the specimens were again measured in 

accordance with AASHTO T166-93. There usually was not a significant difference between 

the pre-NAT and post-NAT bulk specific gravity. The specimens were then placed in a pan 

and heated for approximately two hours at 135 °C to soften and break apart prior to 

determining their theoretical maximum specific gravity following AASHTO T209-94. 
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Summary 

Developing a consistent, rigorous, and most importantly, usable test protocol was a 

fundamental task in the study. It was important to follow existing specifications wherever 

possible, yet at the same time, perform the testing on schedule. 

AASHTO specifications were followed with one notable exception in that the mass of 

the SGC specimens was 3375 g, instead of4500-4700 g. This was necessary since the NAT 

is intended for specimens between 40 and 100 mm thick. The compacted specimens ranged 

in height from 75 to 87 mm. The preliminary study into the effects of specimen height 

indicated that this would have only a slight impact on the NAT results and would not affect 

the determination of the critical change of state where the mix becomes unsound. 

The applicable British Standards calling for specimen ends to be sawn and polished 

was not followed as it would have been time consuming and created difficulties with 

determining the theoretical maximum specific gravity of the test specimen. The specimen 

ends were lubricated as required in the British Standards. 
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CHAPTERS. RESULTS AND DISCUSSION 

Determination of the Critical State 

Once the laboratory testing was complete, the test data was analyzed to determine the 

critical volumetric properties for each of the 36 aggregate blends. The first step of the 

analysis was to determine the critical transition asphalt content of the compacted HMA 

mixture based on a visual analysis of the NAT results. To show how this was done, the test 

results for two of the 100 percent manufactured 9.5 mm NMAS mixes are shown in Figure 

14. In this figure, each point is the average of two specimens. The accumulated microstrain 

of the Dense mix (MM9.5D) seems to increase slowly with increasing asphalt content until 

about 6.9 percent asphalt content where the axial strain begins to increase dramatically. 

Thus, 6.9 percent asphalt is the critical asphalt content for this mix where it transitions from 

sound to unsound behavior. Thirty-one of the thirty-six mixes showed this transition clearly. 

The other five mixes were similar to the fine mix (MM9.5F) and did not have a clear peak 

and were not further analyzed. 

In performing the visual analysis, it was observed that the critical transition was 

usually close to the peak "dry density" (Gmd) or maximum aggregate concentration of the 

asphalt mix. Figure 15 shows how axial microstrain compared with dry density for two of 

the 100% natural 9.5 NMAS mixes. When the visually observed critical asphalt contents 

were regressed against the measured peak dry density of the mixes tested, the two methods 

agreed remarkably well with an adjusted = 0.883. Thus, the peak dry density of the 

compacted mix provides a rational method of identifying the critical change of state 

threshold in asphalt mixtures. 

For each of the thirty-one mixes that became plastic (i.e., unsound), Table 18 lists the 

critical asphalt contents obtained using visual analysis (eye) and Gmd, and the critical air 

voids (Va), VMA, VFA, and asphalt film thickness (FT), that were calculated using the 

critical asphalt content (pbcrit) obtained with Gmd. The five mixes that did not show a critical 

value are shaded and marked N/A. 
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Table 18 Volumetric Parameters at the Critical Transition 

NMS Gradation C/F Pbcrit(eye) Pbcrit (Gmd) Va VMA VFA FT 
9.5 Coarse M/M 6.9 6.2 2.8 13.3 79.2 8.8 

50-50 7.1 6.2 2.8 13.2 76.9 8.6 
MFNC 7.0 6.3 3.5 13.2 73.5 8.0 

N/N 6.1 5.3 2.4 10.8 77.4 7.1 

Dense M/M 6.9 7.1 1.1 14.0 91.9 9.0 
50-50 7.0 6.4 3.1 13.8 77.3 7.6 
MFNC 6.9 7.2 1.2 14.0 91.4 8.9 

N/N 6.0 5.4 2.9 11.8 75.1 6.3 

Fine M/M 
50-50 

MFNC 

N/A 
N/A 
N/A 

N/A 
N/A 
N/A 

N/N N/A 5.1 5.6 13.5 58.4 5.0 
12.5 Coarse M/M 6.5 6 1.6 11.6 86.4 8.9 

50-50 6.3 5.4 3.0 11.1 73.4 7.3 
MFNC 6.0 5.6 2.5 10.9 77.5 7.4 

N/N 6.1 5.5 2.7 11.7 77.2 8.3 
Dense M/M 6.4 6 3.2 13.1 75.3 7.7 

50-50 6.2 5.6 1.8 11.1 84.1 7.2 
MFNC 6.3 5.8 2.2 11.6 79.5 7.2 

N/N 5.5 5 2.1 9.9 78.9 6.1 
Fine M/M N/A: . N/A 

50-50 6.7 5.9 3.4 13.5 74.7 7.2 
MFNC N/A N/A ' 

N/N 6 5.3 3.2 12.0 73.7 6.3 
19 Coarse M/M 6.0 5.4 3.0 11.5 73.4 7.6 

50-50 5.8 4.8 2.9 9.5 69.1 6.0 
MFNC 5.9 5.1 2.3 9.2 75.4 6.2 

N/N 5.5 4.8 2.4 8.4 71.7 5.3 

Dense M/M 6.3 5.7 2.2 11.6 81.2 7.6 
50-50 5.3 4.4 4.8 10.6 54.3 4.7 
MFNC 6.3 5.3 3.1 10.7 71.2 6.2 

N/N 5.2 4.5 3.2 8.7 63.5 4.5 
Fine M/M 6.9 6.4 3.4 14.4 76.2 8.0 

50-50 5.7 5.1 2.2 10.2 78.4 5.8 
MFNC 6.7 6.0 2.9 12.5 77.0 6.9 

N/N 5.9 5.1 2.8 10.2 72.8 5.3 
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In looking at the data presented in Table 18, the critical VMA values identified are 

defined at the measured air content where the mixture became unsound, whereas McLeod 

specified VMA at 5 percent air voids, and Superpave at 4 percent air voids. At the critical 

threshold VMA, the mixes tested averaged 2.6% air voids and ranged from 1.1% to 5.6%. 

Validation of the McLeod/Superpave Critical VMA Requirement 

The fifth objective of this study was to examine and validate the McLeod/Superpave 

VMA vs. NMAS relationship, to see whether the specified VMA values given in Table 1 

adequately discriminate between sound and unsound mixtures. 

Using regression analysis, the critical VMA values in Table 18 were regressed against log 

(NMAS), yielding Equation 1 and the results shown in Table 19: 

VMAcn, = 20.531 - 7.821 log,o(A^A4:45) (1) 

with an adjusted r^ = 0.340 and a standard error of the estimate (s.e.e.) = 1.342. This 

indicates that the observed relationship between measured critical VMA and NMAS alone is 

tenuous at best (r^ = 0.34). Comparing the predicted results using equation (1) against the 

specified values in Table 1, the results in Table 20 are obtained. 

Table 19 Regression Results of McLeod VMA vs. NMAS Relationship 

Model Sum of 
Squares 

Degrees of 
Freedom 

Mean Square F 

Regression 29.663 1 29.663 16.476 

Residual 52.211 29 1.800 
Total 81.875 30 

Table 20 Comparison of Predicted and McLeod/Superpave Critical VMA 

NMAS 
Critical VMA 

Specified (Table 1) Predicted (Equation 1) 

9.5 mm 15.0 12.9 

12.5 mm 14.0 12.0 

19.0 mm 13.0 10.5 
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Figure 16 shows the relationship between the specified and critical VMA identified in 

this project. At first glance, the McLeod/Superpave minimum VMA criteria appears 

effective, as it fails for only 1 out of 31 results, where the observed critical VMA exceeded 

the specified values. However, close examination reveals two problems: 

1. One mixture, A in Figure 16, compacted to the design level of compaction, 

exhibits a VMA of 14.4%. This exceeds the specified minimum value of 13% for 

a 19 mm gradation. All other factors aside, this would be deemed to be an 

acceptable mixture. However, it should be realized that if this mixture were to be 

"overcompacted" to 14% or J 3.5% VMA, it would still be deemed acceptable 

even though it has here been identified to be unstable at any magnitude of VMA 

less than 14.4%. 

2. A different mixture, B in Figure 16, compacted to the design degree of 

compaction, exhibits a VMA of 10%. This does not meet the specified minimum 

VMA requirements and would be rejected as unacceptable. However, this mixture 

would, in fact, exhibit stable behavior. 

While it may appear to work well, it seems clear that the McLeod/Superpave design 

criterion is not a robust predictor of the threshold between sound and unsound mix 

performance. 

Significant Aggregate-related Factors 

The sixth objective of this dissertation is to identify and to evaluate statistically the 

effects of several aggregate-related factors on the critical state of asphalt mixtures. The 

current criteria for critical VMA (Table 1) are based solely on NMAS. As discussed in the 

literature review, percent filler, shape, surface texture, percent crushed aggregate, fine 

aggregate angularity (FAA), and coarseness of the gradation influence the VMA of a 

compacted mix. As previously noted, percent filler was held constant for all mixes, and 

consequently not a variable in the study. 

Examining the aggregate factors listed above, it becomes clear that for the aggregate 

types, gradations, and blends used in the study, some are not significant and others need to be 

refined, as shown in Table 21. 
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Table 21 Identincd Aggregate Factors, Associated Superpavc Test/Property, and Variables used in Study 

Aggregate-related Factor Superpave Test/Property Variables in Study 

Shape & Surface Texture 

Percent Crushed Aggregate 

Flat or Elongated Partlclcs 

Coarse Aggregate Angularity 

Fine Aggregate Angularity 

Flat or Elongated Particles 
Coarse Aggregate Angularity 

Fine Aggregate Angularity 

Manufactured vs. Natural 

Coarse Aggregate Percent Crushed 
Fine Aggregate Percent Crushed 

Fine Aggregate Angularity 

Gradation 

Fine Aggregate Angularity 

Gradation 

Not Used 

Fineness Modulus 

Fine, Dense, Coarse 

NMAS NMAS 
NMAS 

Fineness Modulus 
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Shape and surface texture are not directly measured by the Superpave tests, but are indicated 

well by the aggregate type, manufactured or natural. Percent crushed aggregate has been 

split into two variables, percent coarse and percent fine aggregate crushed. The fine 

aggregate angularity was not used because using Method A, as specified by Superpave, 

would not differentiate NMAS or gradation. Information on gradation was indicated by 

fineness modulus and type: fine, dense, and coarse. The fineness modulus, not usually used 

for asphalt mixes, was considered as a possible refinement of NMAS. 

An additional factor to be considered is aggregate surface area. In Iowa, the DOT has 

for many years relied on the use of film thickness to limit binder content. While film 

thickness is primarily a function of the binder content, it is also a fimction of the surface area 

of the aggregate blend. Surface area is not a measured quantity, but is computed based on 

surface area coefficients for each size fraction of the aggregate. Consequently, surface area 

(as defined) is a possible factor in the determination of a critical VMA. 

Looking at Figure 16, there appears to be a trend in that the 100% natural material has 

the lowest critical VMA, the 50-50 and NCMF blends are intermediate, and the 100% 

manufactured material has the highest critical VMA. 

This leads to the hypothesis that the critical VMA in a mixture is a function of several 

aggregate properties, or: 

VMA^^, = f{NMAS, CAPC, FAPC, FM, SA)+£ (2) 

where: 

NMAS = Nominal Maximum Aggregate Size (mm) 
CAPC = Coarse Aggregate Percent Crushed 
FAPC = Fine Aggregate Percent Crushed 

FM = Fineness Modulus (ASTM C 33) 
SA = Surface Area (Asphalt Institute, MS-2) 

An ANOVA analysis of the data in Table 18 was performed to identify the significance and 

quality of the influence of these factors on the critical VMA identified in each mixture tested. 

As shown in Table 22, the results indicated that only three of the factors (FM, CAPC, and 

FAPC) and two interactions (FM x CAPC and FM x FAPC) were significant at the 5% level. 
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Table 22 ANOVA Results for VMA versus NMAS, CAPC, FAPC, FM, and SA 

Source Sum of Squares Degrees of Freedom Mean Square 
Corrected Model 81.875 30 2.729 

Intercept 4223.423 1 4223.423 
Coarse 12.088 2 6.044 

Fine 3.774 1 3.774 
FM 54.077 8 6.760 

Coarse * FM 9.777 13 .752 
Fine * FM 2.159 6 .360 

NMAS and SA were identified as being of no statistical significance when fineness modulus 

was include in the analysis. This is not unexpected since fineness modulus is related to both 

NMAS and surface area. 

The statistically significant aggregate factors were found to be fineness modulus 

(FM), coarse aggregate percent crushed (CAPC), and fine aggregate percent crushed (FAPC) 

and two interactions (FM x CAPC and FM x FAPC). As the contribution of the two 

interactions to the variance was small, they were dropped fi-om the analysis. This reduced the 

regression to the observed critical VMA vs. FM, CAPC, and FAPC. 

This regression analysis yields Equation 3 and the results shown in Table 23: 

VMA^^, = 23.58-3.34 FA/-1-0.0129 CAPC-k-Q.Q\55 FAPC (3) 

As shown in Table 23, the adjusted r^ is 0.73 and the standard error of the estimate is 

0.86. Comparing this to the McLeod/Superpave regression (Equation 1), 

VMAcn, = 20.531 - 7.821 log,o(A^A^5) 

which had an adjusted r^ = 0.34 and a standard error of estimate of 0.1.34, it is clear that 

adding the aggregate factors significantly improves the accuracy. The r^ is more than 

doubled and the standard error of estimate is almost halved. The results can be further 

improved if two mixes (the 100% Natural 12.5mm NMAS Coarse and the 50-50 19 mm 

NMAS Fine) are thrown out, resulting in the regression equation 

VMA^, = 23.58-3.34 FA/-f0.0129 CAPC-^0.0\5S FAPC (4) 

with adjusted r^ = 0.897 and standard error of the estimate = 0.542, as shown in Table 24. 
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Table 24 Regression Results for VMAcnt = /(FM, CAPC, FAPC) 

SUMMARY OUTPUT 
Regression Statistics 

Multiple R 0870 
R Square 0.756 

Adjusted R Square 0.729 
Standard Error 0.8599 
Observations 31 

ANOVA 
Df SS MS F Significance F 

Regression 61.912 3 20.637 27.912 .000 
Residual 19.963 27 .739 

Total 81.875 30 

^ ™ . Standard 
Coefficients _ 

Error 
t Stat P-value 

Lower 
95% 

Upper 
95% 

Intercept 23.578 1.647 14.320 .000 20.200 26.957 
FM 1.524E-02 .004 3.593 .001 .007 .024 

CAPC 1.006E-02 .004 2.301 .029 .001 .019 
FAPC -2.865 .363 -7.901 .000 -3.608 -2.121 

The meaning and limitations of these predictive equations must be understood. They 

predict the magnitude of the critical VMA for the mixtures tested and compacted at 109 

gyrations of the SGC. They provide a means by which the critical VMA of an asphalt 

mixtm-e may be estimated based on aggregate factors, which is a refinement of the 

McLeod/Superpave VMA requirement. As Figure 16 shows, there is a very good fit between 

predicted and observed critical VMA for the data set studied. However, the relationship 

needs to be validated with field and laboratory data prior to being used as design criteria. 

Again, it must be noted that the air void content is not constant. However, it should 

be recalled that the specified values are specifically set to allow for an air void content of 4%. 

The measured values obtained by testing do not contain 4% air voids (Table 18), averaging 

2.6%. This suggests that the volume of effective binder is a significant variable and may be a 

better predictor of mix performance. Two alternative parameters, VFA and asphalt film 

thickness, are functions of the volume of effective binder and hence may be more effective 

than VMA at indicating mix performance. 
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Table 25 "Improved^Regression Results for VMAcnt ~/(FM, CAPC, FAPC) 

SUMMARY OUTPUT 
Regression Statistics 

Multiple R 0.953 
R Square 0.908 

Adjusted R Square 0.897 
Standard Error 0.5422 
Observations 29 

ANOVA 
Df SS MS F Significance F 

Regression 72.356 3 24.119 82.036 ^00 
Residual 7.350 25 .294 

Total 79.706 28 

^ ^ . Standard . o. . d / Lower Upper 
Coefficems tSta, P-value 

Intercept 25.098 1.064 23.584 .000 22.907 27.290 
FM 1.788E-02 .003 6.478 .000 .012 .024 

CAPC 1.180E-02 .003 4.255 .000 .006 .018 
FAPC -3.247 .237 -13.726 .000 -3.734 -2.760 
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CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 

Mix designers target mixture parameters close to the specifications as a matter of 

economy. As shown in the literature review, achieving the required VMA is often the most 

difficult step in the mix design process. It appears prudent to expand and refine the 

McLeod/Superpave relationship to include the effects of aggregate-related factors such as 

gradation, percent crushed coarse aggregate, and percent crushed fine aggregate. The goals 

of this project were to examine whether or not this was feasible; and if so, to provide a 

rational method for adjusting the current minimum VMA vs. NMAS relationship. It must be 

emphasized that the conclusions are based upon carefully controlled laboratory testing of a 

limited number of specimens, at one level of compaction, and have not been verified in the 

field. 

Based on the literature search, laboratory testing, and analysis of test data, the 

following conclusions are made: 

Conclusions 

Literature Review 

1. The definition of minimum (or critical) VMA adopted by Superpave is dependent only 

upon NMAS without regard to other significant aggregate-related properties (5). 

2. The minimum VMA criterion adopted by the SHRP Expert Task Group for Superpave 

was essentially that proposed by Norman McLeod in 1959 (7). 

3. The available literature on the development of the minimum VMA criterion is sketchy; 

McLeod presented his relationship without the research or data from which it was derived 

and suggested that it would be modified with experience and test data (7). 

4. The implementation of Superpave has brought significant awareness of and renewed 

focus on how difficult and problematic meeting the minimum VMA criterion can be for 

mix designers (6-7). 

5. Prior to SHRP, there was some awareness of difficulties in meeting minimum VMA. 

Some researchers attempted to develop rational methods of increasing VMA based on 

gradation and others modified the criterion to account for gradation. {19,4). 

6. There is considerable interest in using asphalt film thickness either to supplement or to 

replace the minimtim VMA criteria (5 8-9). 
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7. The laboratory tests that seem best suited for determining the critical state transition of 

asphalt paving mixtures are the permanent deformation tests. Reviewing the literature, 

there is not a consensus as to which laboratory test would best distinguish the critical 

state of VMA. Based on cost, availability, ease of use, and the SHRP findings (//), the 

repeated load triaxial test apparatus appears to be the preferred method. 

8. Several researchers have pointed out aggregate factors other than NMAS that effect 

VMA. These include percent filler, shape, surface texture, percent crushed aggregate, 

fine aggregate angularity, and coarseness of the gradation. 

Analysis of Test Data 

1. As shown in Figure 15, the specified VMA values provided by Superpave (Table 1) do 

not appear to be adequate for identifying mixture performance; only 1 out of 31 results 

was correctly identified; a success rate of about 3%. 

2. ANOVA analysis of the test data identified three factors, fineness modulus (FM), coarse 

aggregate percent crushed (CAPC), fine aggregate percent crushed (FAPC), and two 

interactions (FM x CAPC and FM x FAPC) as significant. 

3. ANOVA analysis identified the nominal maximum aggregate size (NMAS) and surface 

area (SA) of the gradation as being of no statistical significance when the fineness 

modulus was included in the analysis. 

4. Linear regression analysis showed the current VMA specification (VMA vs. log 

(NMAS)) had an adjusted r^ value of 0.34. 

5. Linear regression analysis of VMA versus FM, CAPC and FAPC had an adjusted r^ value 

of 0.90. 

Thus from the literature review, testing, and statistical analysis performed on this project, 

it appears that the current minimum VMA requirements specified in Superpave mix design 

protocol are overly restrictive and urmecessary, ruling out candidate aggregate gradations that 

could perform adequately. 
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Recommendations 

The literature review, testing, and statistical analysis performed on this project have 

suggested the following recommendations: 

1. The predictive relationship for critical VMA obtained in this study needs to be compared 

with field data and verified or adjusted as necessary. 

2. If a minimum VMA is to be specified, it should include fineness modulus, coarse 

aggregate percent crushed, and fine aggregate percent crushed, and their interactions. 

3. The volume of effective binder, which is strongly related to VFA and asphalt film 

thickness, may be a more significant measure of mix performance than commonly 

believed. 
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APPENDIX A. AGGREGATE SPECIFIC GRAVITY RESULTS 
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Table A-1 Specific Gravity Results for Individual Sieve Sizes 

Specific Gravity 
Manufactiired Natural 

12.5 mm* 2.558 2.481 
9.5 mm* 2.556 2.515 
4.75 mm* 2.553 2.519 
2.36 mm* 2.591 2.543 
1.18 mm* 2.593 2.546 

0.60 mm** 2.712 2.648 
0.30 mm** 2.706 2.638 
0.15 mm** 2.741 2.664 

0.075 mm** 2.777 2.673 
P0.075 mm** 2.817 2.640 

* Bulk specific gravity 

** Apparent specific gravity 
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APPENDIX B. VOLUMETRIC DATA RESULTS 

Gsb = 

SA = 

Gsc = 

Abs. (%) = 

Gmb = 

Gmm = 

Air Voids = 

VMA = 

VFA = 

Dust/Pbe Ratio 

K = 

Film Thickness 

Bulk Specific Gravity of the Aggregate 

Surface Area 

Effective Specific Gravity of the Aggregate 

Percent Asphalt Absorption 

Bulk Specific Gravity of the Compacted HMA Specimen 

Theoretical Maximum Specific Gravity of the HMA 

Percent Air Voids in the Compacted HMA Specimen 

Voids in the Mineral Aggregate 

Voids Filled with Asphalt 

Ratio of %P0.075 mm Material to Effective Asphalt Content 

Richness Modulus 

Average Asphalt Film Thickness (microns) 
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Table B-1 Summar>' of Volumetric Results for 100% Crushed Specimens 

Property 
9.5 12.5 19 

Property 
D laaâ  F 9̂̂  c D 

Gjb 2.608 wmm 2.609 mm 2.591 mm 2.593 mm 
SA 5.95 5.99 mm 4.68 5.02 m§m 
Gk 2.727 mm 2.728 mm 2.718 2.722 mm 

Abs. (%) 1.69 mm 1.72 1.84 is sm 1.86 mmw 

Gmb 
9.5 12.5 19 

Gmb 
D F 'mxm C msFms D 

4 2.292 mmm 2.275 2.353 mmM 2.358 
4 2.291 2.285 mmm 2.352 m im 2.352 
5 mmM 2.319 2.318 2.390 imm 2.402 
5 2.347 2.305 mmm 2.396 2.397 
6 mmi 2.350 msm 2.337 2.438 mm 2.446 
6 i2̂ 82f 2.355 2.331 2.435 wmm 2.447 l̂ |442«J 
7 f2389£ 2.414 2.376 2.429 -smBM 2.432 mmm 
7 f23.P8J 2.410 2.396 mm$ 2.425 2.432 mmM 
8 2.403 mmm 2.400 Ŝ 409J 2.406 2.409 mmM 
8 2.403 2.400 mmm 2.404 ^m63i 2.400 

Gmm 
9.5 12.5 19 

Gmm 
D F c D 

4 2.557 2.556 2.551 î 8S 2.552 
4 2.557 2.556 mMm 2.551 2.552 
5 mmsu 2.518 2.516 mmx̂  2.512 ŝmm 2.513 mmM 
5 mS25M 2.518 mmm 2.516 mmm 2.512 2.513 mmM 
6 2.480 wmM 2.477 mm3M 2.475 Ŝ OJ 2.475 wmm 
6 i2M6" 2.480 mmM 2.477 mmm 2.475 2.475 mmm 
7 2.443 wmsM 2.440 2.439 mm 2.438 
7 5̂4493 2.443 ^M3?J 2.440 mmm 2.439 2.438 
8 12:4:135? 2.407 2.404 mm 2.404 2.402 mmm 
8 2̂.4.13 i 2.407 mmM 2.404 f2e4ia^ 2.404 mmm 2.402 f-2f403» 

-Air Voids 
9.5 12.5 19 -Air Voids 
D F C D 

4 10.4% 1 1.0% 7.8% 8.2% 
4 10.4% 10.6% |10.'5%; 7.8% 8.4% 
5 7.9% mmB 7.9% 4.9% 5.2% 
5 si2ri%; 6.8% 8.4% ;5jS;9%  ̂ 4.6% 5.4% 
6 5.3% y3-8§̂ ' 5.6% 1.5% 2.1% v̂mi 
6 5.1% mmm 5.9% Ŝ 5:2%' 1.6% mmm 2.0% 
7 1.2% 2.6% 0.4% 

1
 

8
 1.3% 0I2%-

7 1.4% 1.8% m5% 0.6% 1.3% :;0;̂  
8 2̂f5.%  ̂ 0.2% ;̂ Pi2%t 0.2% iSO.3% -0.1 % 0.9% 0.0%; 
8 0.2% 0.1% 1̂0:3% 0.0% 1.3% t0̂ 2% 
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Table B-1 (Cont'd) 

VMA 

12.8% 6.3% 6.3% 
12.9% 6.3% 5.9% 

16.2% 15.6% 2.4% 
12.1% 15.1% 6.0% 

1.6% 15.9% 5.8% 
5.8% 6.0% 

14.6% m 15.3% 2.8% 
13.0% 4.7% 4.6% 
14.6% 5.9% 5.4% 

15.9% 15.3% 4.6% 

19 
D 

12.7% 
12.9% mm& 
12.0% 
12.2% mmm 
11.3% 
11.3% 
12.8% 
12.8% mm 
14.5% mm¥ 
14.9% 

VFA 
9.5 12.5 19 

VFA 
wmm D ptBGwa F mMnMMBB D 

4 mmm 33.8% 32.5% 39.5% e^sss 40.1% 
4 mmm 33.7% mmm 33.4% 39.3% 39.4% 
5 mmm 49.2% 49.5% 60.7% 63.3% 
5 mmm 53.3% 47.8% 61.8% 62.2% ?(625̂ ?iSt 
6 mmm 65.7% 64.2% mm 86.9% 89.7% 
6 mmB 66.6% 63.1% m^m 86.0% ssiosjsf 90.1% 
7 91.5% 82.9% 97.0% msm 98.2% ;98;4% 
7 i6mî  90.4% msm 87.5% mss!̂  95.6% msm 98.0% mmm 
8 mm'M 98.7% mim: 98.9% 100.6% mma 102.0% apQi2%L 
8 mmm 98.9% 99.0% mmm 100.1% 99.5% 

Dust/Pbe 
Ratio 

9.5 12.5 19 Dust/Pbe 
Ratio D F mom c ipSHS D mom 

4 1.7 1.7 1.8 1.8 mm 
4 1.7 1.7 1.8 1.8 mim: 
5 1.2 mwm 1.2 1.2 wmm 1.2 
5 1.2 mmm 1.2 1.2 SSS^Si 1.2 
6 0.9 mms 0.9 wmm 0.9 nmm 0.9 
6 0.9 mjm 0.9 mŝ M 0.9 0.9 
7 0.7 mmm 0.8 mmi 0.8 0.8 
7 0.7 mim 0.8 0.8 0.8 
8 0.6 

i
 

1
 0.6 0.6 0.6 mOrŜ  

8 m:6M^ 0.6 0.6 0.6 wm  ̂ 0.6 

K 
9.5 12.5 19 K 

mmm D F mpm c mm. D .1-1? 
4 2.52 mmm 2.51 mmi'i 2.42 2.44 •ii:2;40£{. 
5 3.18 3.17 3.05 3.08 -:3i03?: 
6 3.86 mam 3.84 3.70 3.74 :>3.68 
7 4.55 4.53 4.37 4.41 
8 5.26 5.24 5.05 5.09 i5.0Xi> 
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Tabic B-1 (Cont'd) 

Film 
Thickness 
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Tabic B-2 Volumctric Results for 50% Crushed/ 50% Natural Specimens 

Property 
9.5 12.5 19 

Property 
D F c mmm D mê  

Gjb mBM 2.593 2.597 2.573 m§m 2.578 
SA mm 5.95 mmi 5.99 mmm 4.68 mmm 5.02 
G« 0.000 37.318 mmm 37.116 mmm 37.032 

Abs. (%) 1.30 WBSsm 1.21 mmm 1.78 msim 1.79 mmm 

Gmb 
9.5 12.5 19 

Gmb 
D m&m F C D 

4 MMM 2.273 2.294 mm 2.351 mmm 2.389 
4 mmm 2.272 mmm 2.312 mm  ̂ 2.360 2.399 1239fl:s 
5 |2a45J' 2.309 mmm 2.346 mm 2.386 2.408 #2;mP 
5 mtim 2.323 2.329 2.396 2.399 
6 wmm 2.369 2.356 imm 2.425 mmm 2.423 U2m9j^ 
6 mMm 2.343 2.380 2.427 mmm 2.435 
7 2.388 2.394 mmm 2.415 mm§. 2.411 f2395̂  
7 mmm 2.381 2.385 mmM 2.409 mmm 2.385 2̂̂ 1(65 
8 mmm 2.374 îpj 2.380 mmQM 2.381 mmm . <• •*•. •„ ' J-** --yri'ls 
8 1̂ 4̂61 2.381 2.382 %2m63 2.384 2.376 2357}i 

Gmm 
9.5 12.5 19 

Gmm 
D mmm F C SSO^ ŝS D 

4 mism 2.528 mm 2.519 mmm 2.531 mmm 2.535 mmm 
4 mmsB 2.528 mm 2.519 msim 2.531 mmiM 2.535 J2i535i? 
5 mm 2.493 mBm 2.481 wmm 2.493 2.497 
5 mmjM 2.493 mim 2.481 mmM 2.493 msm 2.497 ^mm 
6 m^m 2.458 miSM 2.445 mmm 2.456 2.459 ^mm 
6 mmm 2.458 mmm 2.445 2.456 2.459 i2Mi3 
7 mmm 2.424 mmm 2.410 mmsM 2.421 mm 2.423 
7 2.424 wmm 2.410 2.421 mmi 2.423 
8 mmn 2.392 2.376 52;369« 2.386 t23.85^ mmm 
8 2.392 \mMM 2.376 2.386 ^<2^,85,^ 2.388 ?2:39.lf 

Air Voids 9.5 12.5 19 Air Voids 
D F C D 

4 10.1% mmro 8.9% 7.1% ^5^6% 5.7% y 43% 
4 10.1% m9jm 8.2% •:6:8% 6.8% 5.3% ::Sn% 
5 7.3% 5.5% >3.5% 4.3% 3.5% 2.0% 
5 ?siM% 6.8% 6.1% r3;4% 3.9% ̂ 2iO% 3.9% 2.9% 
6 §M?2% 3.6% 3.6% 0.6% 1.3% 1.5% 0.5% 
6 §16.9% 4.7% 2.7% 1.2% ̂ i0i4% 1.0% 0.9% 
7 1.5% 0.7% wi0;5% 0.2% l^P.2% 0.5% 1:2% 
7 3;|4^3!% 1.8% MMVo 1.1% -0.3% 0.5% MtOLL% 1.6% 0.4% 
8 0.8% -0.2% -0.5% 0.2% - * - • • -' 

8 0.5% -0.3% •-0.3% 0.1% fg«0.'2%| 0.5% '1.4% 
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Tabic B-2 (Cont'd) 

VMA 
9.5 12.5 19 

VMA 
D F mmm c mrnn D 

4 15.8% 15.2% 12.3% 11.0% 
4 15.9% 14.6% mim 12.0% 10.7% IS^̂ f 
5 15.4% 14.2% mm9» 11.9% 11.3% mm 
5 £̂g&g$ 14.9% mm 14.8% 11.5% mŝ  11.6% msm 
6 14.1% 199̂  14.7% wm̂  11.4% 11.7% mmr* 
6 îiess$ 15.0% 13.9% I 1.3% mmss 11.2% 
7 14.4% mm 14.3% mjm 12.7% 13.0% mm̂  
7 14.6% mmr̂  14.6% mmm 12.9% hssass 14.0% 11̂ 2:6% 
8 15.8% 15.7% gns3% 14.9% imim 
8 15.5% 15.6% sgrsgt% 14.8% 15.2% 

VFA 
9.5 12.5 19 

VFA 
D iî  F mm C ŝssiia D 

4 36.3% 41.3% wŝ  42.2% 48.0% 
4 0̂% 36.2% 43.5% mm 43.5% mm* 49.9% m§m 
5 52.2% mm?f9 61.6% 63.9% msm 68.5% mm% 
5 54.3% 58.6% mm 66.4% msm 66.3% m23ro 
6 74.4% wĵ jm 75.3% 88.9% 87.3% ̂ 9mvo 
6 69.0% 80.7% msm 89.6% mmŝ  91.3% m2im 
7 89.5% 95.4% 98.1% mmfi 96.1% mm 
7 87.7% mmro 92.8% mm 96.4% It00!6% 88.6% wjjm 
8 95.2% msm 101.0% 98.7% msm. 
8 97.1% mm 101.7% mim 99.3% 96.6% ^Q;S>% 

Dust/Pbe 9.5 12.5 19 
Ratio D F mm C msm D 

4 1.47 wmmi 1.40 1.78 mmsz 1.75 f̂ 182 
4 1.47 IMW4 1.40 1.78 mmz 1.75 1̂ 82 
5 1.08 mm 1.04 1.23 1.21 1̂ 24. 
5 1.08 mMQ 1.04 mm 1.23 1.21 
6 0.85 W9:92 0.82 i

 
00

 

0.94 m9M 0.93 
6 ^mM 0.85 ^MQj92 0.82 0.94 moM 0.93 
7 msm 0.70 fmoMs 0.68 mim 0.76 mom 0.75 0̂i76 
7 0.70 5r5»0;75 0.68 wmm 0.76 0.75 
8 ^ ŝ0r58 0.60 ^;Xfj0.63 0.58 mmi 0.64 0.63 ^ .̂Q-64 
8 0:58 0.60 0.63 0.58 7̂?jO;61 0.64 ?̂0-60 0.63 
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Tabic B-2 (Cont'd) 

K 
9.5 12.5 19 

K 
D F mom c mmt D 

4 2.51 2.50 mm9 2.40 MBSS8 2.43 
5 msm 3.17 inH  ̂ 3.16 3.03 3.06 iHî  
6 3.84 3.83 WBm 3.68 3.72 
7 4.53 4.51 MBB 4.34 mtŝ  4.38 msm 
8 l?̂ 32| 5.23 Imfesii 5.22 mm. 5.01 mmm 5.06 msm 

Film 
Thickness 

9.5 12.5 19 Film 
Thickness D F mm c D 

4 4.5 4.7 *H»mE 4.7 4.4 wmM 
5 6.2 mm 6.3 6.9 wm  ̂ 6.4 
6 wmm 7.9 8.0 lii^ 9.0 8.4 
7 mm 9.6 9.7 11.1 wmM 10.4 mm 
8 n.3mmm\ 11.3 13.3 12.4 
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Tabic B-3 Volumetric Results for Manufactured Fine-Natural Coarse Specimens 

Property 
9.5 12.5 19 

Property 
j D F mim c mm D 

Gjb 5 2.572 2.574 mmm 2.560 2.563 tmsi 
SA 5.95 5.99 mm 4.68 mm 5.02 
G„ 2.699 mL6m 2.680 ĝ684g 2.694 msm 2.700 mm 

Abs. (%) 1.88 1.58 1.99 2.03 mom 

Gmb 
9.5 12.5 19 

Gmb 
1̂ 1̂  D mm. F mpm c D 

4 2.273 m9M 2.294 mim 2.351 2.389 mm 
4 2.272 2.312 2.360 |2M3i 2.399 ^390} 
5 2.309 WM63. 2.346 2.386 t2r422i 2.408 mz448s 
5 

i 1 2.323 mmm 2.329 2.396 2.399 mjam 
6 2.369 mmsM 2.356 wm%M 2.425 mmm 2.423 mmm 
6 2.343 mm 2.380 2.427 >̂3a4M 2.435 mm9M 
7 2.388 mm 2.394 mm3i 2.415 mm 2.411 
7 2.381 mm 2.385 mmm 2.409 mizm 2.385 
8 2.374 2.380 22380.1 2.381 
8 2.381 2.382 2.384 1239.0J 2.376 2̂357̂  

Gmm 
9.5 12.5 19 

Gmm 
D F mm C -mim D 

4 sm9j 2.528 Ĵ527|J 2.519 mfsm 2.531 mm 2.535 mms3 
4 m§m 2.528 mmm 2.519 mum 2.531 2̂Ĵ 28J 2.535 m^S35M 
5 mm 2.493 mmm 2.481 mmi 2.493 mmm 2.497 
5 mmm 2.493 2.481 2.493 mm 2.497 
6 2.458 mmm 2.445 mmm 2.456 2.459 §2Bm 
6 mm 2.458 2.445 2.456 mjM 2.459 mm 
7 mmm 2.424 mm 2.410 mmM 2.421 mi9M 2.423 m^2s? 
7 2.424 2.410 2.421 2.423 121425? 
8 2.392 2.376 2.386 mj3.m 
8 t23J82i 2.392 ^̂ 32k: 2.376 mm9.̂  2.386 2.388 n^9m 

9.5 12.5 19 
D F C D 5;--CV. 

4 ??I2̂  10.1% m9Wo 8.9% imm 7.1% 5.7% Kf43% 
4 WiiV/o 10.1% :̂ 9Wo 8.2% 6.8% 5.3% Ŝ ;5-.7% 
5 7.3% v^Q% 5.5% 4.3% ;^t^2i8% 3.5% svi2.0% 
5 rnayĵ  6.8% 6.1% 3.9% •mQ% 3.9% ̂ •̂ 2.9% 
6 3.6% ':y:3:6% 3.6% mfmi 1.3% :iO-7% 1.5% 
6 ?̂ 6:S% 4.7% •r>3;7% 2.7% 1.2% imm 1.0% imS5% 
7 :4;6% 1.5% 0.7% c^fOWo 0.2% .m'2% 0.5% î ;̂h2% 
7 •43% 1.8% 0.6% 1.1% 0.5% mim 1.6% ;?-0.4% 
8 t.4% 0.8% 0.1% -0.2% 0.2% ^>0.5% 
8 i:5% 0.5% 0.2% -0.3% ^ 0̂3% 0.1 % iO.2% 0.5% ;̂ 1;4% 



www.manaraa.com

76 

Tabic B-3 (Cont'd) 

VMA 
9.5 12.5 19 

VMA 
D F c D 

4 15.8% mmi 15.2% 12.3% 3mm 11.0% 
4 15.9% msm 14.6% 12.0% 10.7% 
5 15.4% mmki 14.2% wsmst 11.9% 11.3% 
5 14.9% 14.8% mwm 11.5% 11.6% 
6 14.1% mmi 14.7% wms® 11.4% mnm 11.7% 
6 15.0% 13.9% 11.3% mim 11.2% %\mWi 
7 îiascoi 14.4% mmi 14.3% mm 12.7% msm 13.0% mmt 
7 14.6% mms 14.6% 12.9% mm4 14.0% Sl2;̂  
8 15.8% mt(m 15.7% msmar. 14.9% mmm 
8 15.5% mnm 15.6% 14.8% 15.2% 

VFA 
9.5 12.5 19 

VFA 
D F C D 

4 36.3% wmm 41.3% 42.2% mm  ̂ 48.0% |54;4% :̂ 
4 36.2% 43.5% 43.5% ^ism 49.9% i46v7%:: 
5 nmm 52.2% 61.6% 63.9% 68.5% 579.2%; 
5 wmm 54.3% tmsŝ  58.6% mssss 66.4% 66.3% 
6 74.4% wMsm 75.3% 88.9% 87.3% 9̂5;4%r 
6 mmss 69.0% wmm 80.7% msm(̂  89.6% 91.3% .1920% 
7 89.5% wm&% 95.4% mmm 98.1% imm 96.1% imw* 
7 |75|)BŜ  87.7% hmm 92.8% 96.4% 400:6>4 88.6% W'Sm'i 
8 m7m 95.2% 101.0% mm 9̂ 98.7% J.03i5% 
8 97.1% 101.7% 99.3% 96.6% i90.9%: 

Dust/Pbe 
Ratio 

9.5 12.5 19 Dust/Pbe 
Ratio D F SCSKSsKBK c D 

4 1.47 1.40 smm 1.78 5̂52̂  1.75 1̂̂ 82jl 
4 1.47 1.40 m^m 1.78 mmm 1.75 '^V:S2'-.S-
5 1.08 1.04 mmm 1.23 sa$ij)j3 1.21 
5 1.08 1.04 1.23 1.21 
6 t 0.82 2?? 0.85 0.82 0.94 xiO.86?.? 0.93 ;f0.94r 
6 0.85 w(m§ 0.82 m:zm 0.94 wm: 0.93 
7 0.70 0.68 mmm 0.76 0.75 m/76' 
7 0.70 0.68 mmm 0.76 0.75 •0,76 
8 ? 0,58^ 0.60 c'0.63«f 0.58 0.64 5 0:60: 0.63 ;?P.64v 
8 o:58 - 0.60 0.63 ; 0.58 0.64  ̂ 0.60 i 0.63 0.64 
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Table B-3 (Cont'd) 

K 
9.5 12.5 19 

K D F c D HWinKSSSCSB* 

4 2.51 2.50 mmBi 2.40 mm 2.43 
5 3.17 msm 3.16 laiyiyii 3.03 3.06 imm 
6 smm 3.84 mMm 3.83 ŝmm 3.68 Isssm 3.72 msm 
7 4.53 4.51 4.34 imm 4.38 mam 
8 wmm 5.23 5.22 mm 5.01 mmm 5.06 m ĵm 

Film 
Thickncss 

9.5 12.5 19 Film 
Thickncss D F mm C D mSKMSH^ 

4 WMM 4.5 4.7 mmm 4.7 4.4 mmm 
5 WPB?^caaK» 6.2 6.3 6.9 6.4 -qrapftatt: 9aKia3EB< 
6 7.9 8.0 mmM 9.0 mmi 8.4 
7 9.6 umiii 9.7 msm I I . 1  10.4 
8 1 1 . 3  I I . 3  mmw 13.3 12.4 mmm 
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Tabic B-4 Voiumetric Results for 100% Natural Specimens 

Property 
9.5 12.5 19 

Property 
D 5i33Srif3^M$i F C mm D 

Gsb 2.536 Tirff i~r> ̂  n iBIy ^ 2.540 2.529 2.532 mm 
SA 5.95 mm 5.99 mm 4.68 mm 5.02 

G,e 2.643 2.641 2.635 2.680 mmi 
Abs (%) 1.64 1.55 mm 1.63 mmm 2.22 

Gmb 
9.5 12.5 19 

Gmb 
D F C D 

4 2.312 wmm 2.328 2.315 2.403 >̂ 2̂ 4043 
4 2.310 2.316 •̂ i4m 2.307 2.406 
5 2.352 3̂31 2.355 msm 2.333 2.436 
5 mm 2.363 2.348 2.349 mmM 2.439 
6 tmmi 2.368 2.385 mmm 2.384 m4om 2.440 
6 mssi 2.376 2.377 mmm 2.379 mmm 2.438 mm 
7 2.373 mmm 2.376 m^m 2.364 2.398 
7 m^m 2.369 m^m 2.368 mm 2.380 2.394 n^9m 
8 2.343 2.347 mmm 2.336 2.365 

2.342 mmm. 2.353 2.325 3i2368? 2.374 

Gmm 
9.5 12.5 19 

Gmm 
D mmi F C D 

4 2.486 m^m 2.484 msm 2.480 2.519 2̂-524= 
4 i f̂5p3§ 2.486 mmsM  ̂ 2.484 wmm 2.480 t22aa:> 2.519 ;̂524̂  
5 2.449 2.448 2.444 mmM 2.482 £̂238:̂ ? 
5 :̂2:̂ 65g 2.449 ^mm 2.448 mim 2.444 mwM 2.482 S2|4-8̂ 5 
6 32Sf|28̂  2.414 2.413 mmm 2.409 mmm 2.446 
6 S2r428* 2.414 2.413 nBjM 2.409 mmm 2.446 mmoM 
7 v2^?2i 2.380 -̂ mspj 2.378 'm,m 2.375 ^MP2̂  2.411 mmt 
7 •>2;392î  2.380 2.378 mmm 2.375 mm2̂  2.411 mmn 
8 i:2.3.S8̂ , 2.346 2.345 mmm 2.342 mMM 2.376 
8 2̂̂ 8?! 2.346 2.345 2̂3516 2.342 #23683 2.376 
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Tabic B-4 (Cont'd) 

Air Voids 
9.5 12.5 19 

Air Voids 
D F •!mm. c D 

4 7.0% msm 6.3% mm 6.7% 4.6% mfm 
4 7.1% 6.8% 7.0% msm 4.5% wmm 
5 mm 4.0% S ŜSiK 3.8% 4.5% 1.9% mm 
5 mm 3.5% 4.1% msm 3.9% 1.7%, 
6 mms 1.9% 1.2% 1.0% mmm 0.2%. mmm 
6 mm% 1.6% mmm 1.5% tmm 1.2% m9m 0.3% 
7 mms 0.3% mm 0.1% 0.5% mm 0.5%. mmm 
7 0.4% wmsi 0.4% mmm -0.2% iOlSSS 0.7%. mam 
8 0.1% mmm -0.1% 3&13Sm 0.2% 0.5% 
8 mmm 0.2% -0.3% mum 0.7% 0.1% 

VMA 
9.5 12.5 19 

VMA 
-mm D F mm c D 

4 12.5% sia^aa 12.0% mjm 12.1% 8.9%. 
4 wmm 12.5% 12.5% 12.4% WMM 8.8% 
5 11.9% WŜ  11.9% 12.3% 8.6% 
5 a2i9>sr?i 11.5% 12.2% 11.7% msŝ  8.5% Mmyi 
6 mms 12.2% 11.7% glQlS^t 11.4% mim 9.4% m5%P: 
6 mmsi 11.9% SmMS 12.0% 11.5% rn^m 9.5% msmi 
7 13.0% imm 13.0% 13.1% mma 11.9% Sm'/iit 
7 mi»m 13.1% ^mm 13.3% 12.5% 12.1®/o ivmm 
8 §!:mm 15.0% 15.0% 15.0% 14.I»/o 
8 mmm 15.0% wmssi 14.8% 15.4% m^m 13.7% 

VFA 
9.5 12.5 19 

VFA 
D mmŝ . F mm C D 

4 wmo% 43.8% 47.5% 45.1% mm  ̂ 48.3% ASiim 
4 ^̂ emrot 43.5% 45.5% mm4 43.8% mm t̂ 49.0% i47iQ?47 
5 66.5% m ŝm 68.1% 63.3% mmm 78.5% S78^| 
5 69.2% mi&m 66.5% mmx 67.0% 79.9% a»,syo, 
6 84.5% wmm 90.2% 90.9% mimt 97.5% -9435^01 
6 86.7% msm 87.7% mmG 89.3% TOlSSt 96.7% 
7 97.8% msm 99.3% 96.4% 95.8% 197̂  
7 96.6% mnm 96.7% :9.7>7.% 101.8% mi9m 94.2% mAy^= 
8 mwô  99.1% 100.6% 98.4% 96.7% 
8 l94;4%^ 98.7% J02:2%- 102.3%. 99 2% 95.2% \S|?.9%. 99.3% 
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Tabic B-4 (Cont'd) 

Dust/Pbc 
Ratio 

wm 

mm 

K 
9.5 12.5 19 

K ifiirtfiyTTiiiinffiTi D F c mtm D 
4 ai@i3H 2.45 jfaoaa 2.44 2.36 2.38 
5 3.10 3.09 msm 2.98 3.01 mm 
6 mmm 3.76 3.74 mf69M T.I T Tf 3.61 m!7m 3.65 
7 4.43 4.41 mem 4.26 mmM 4.30 4P4 
8 5.12 5.10 mm 4.92 4.97 4̂ 90 

Film 9.5 12.5 19 
Thickness ii£^ D F c mmmi nWKSXBfCv- D 

4 4.0 4.1 5.1 3.5 mim 
5 5.6 mssm 5.8 7.2 wma 5.5 mm 
6 7.3 lA 9.3 mim 7.5 
7 9.0 9.1 mm 11 .5  m^m 9.5 
8 10.7 10.8 13.6 mmM 11 .5  
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APPENDIX C. NOTTINGHAM ASPHALT TESTER (NAT) RESULTS 
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Tabic C-1 Accumulated Axial Microstrain at 1800 Cyclcs for 100% Crushed Specimens 

Asphalt 
Content (%) 

Spccimcn 

ID 
9.5C 12.5C 19C 9.5D 12.5D 19D 9.5F 12.5F 19F 

4 1 9462 9645 9645 7729 8545 8510 8101 8690 7331 

4 2 9974 8617 9494 8234 8516 8267 9640 8152 8669 

5 I 9822 9254 9758 8049 9508 10408 7606 8358 7475 

5 2 9228 9468 9264 8207 8988 8069 9696 8057 8128 

6 I 9130 9546 10347 8819 8352 9876 8257 8163 8158 

6 2 8984 9532 11315 8748 8004 10696 8916 8719 8492 

7 I 11920 16206 14205 9552 14669 17169 8193 8282 8974 

7 2 9250 14845 12979 9392 12520 18699 9450 6296 9456 

8 1 21091 27823 29365 18880 24661 30125 8692 21515 23615 

8 2 28868 33258 27849 20559 21188 34319 8297 17029 20653 

Table C-2 StifTness (kPa) at 1800 Cycles for 100% Crushed Specimens 

Asphalt 
Content (%) 

Specimen 

ID 
9.5C 12.5C 19C 9.5D 12.5D 19D 9.5F 12.5F 19F 

4 I 416474 451482 451340 406157 430875 462183 347307 407752 431472 

4 2 422562 463575 451482 386504 415363 418794 334382 400414 411522 

5 1 404934 460068 426515 400278 423545 437259 365337 399758 426515 

5 2 403323 443302 442657 426515 416582 445032 340021 396157 414312 

6 1 379882 436631 457146 402788 405394 447297 363169 401194 392394 

6 2 385124 430219 432123 388881 404847 401892 360558 399088 395455 

7 1 384993 379507 420343 371790 401472 396454 336041 380731 380858 

7 2 391926 398611 391161 375554 389600 355558 336785 421432 388844 

8 1 333357 332237 357025 340629 355315 354466 379657 331866 318677 

8 2 307768 319363 339072 360934 352780 334485 342461 353621 329653 
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Tabic C-3 Accumulated Axial Microstrain at 1800 Cyclcs for 50% Crushed/50% Natural Specimens 

Asphalt 
Content (%) 

Spccimcn 
ID 

9.5C 12.5C 19C 9.5D 12.5D 19D 9.5r I2.5F 19F 

4 1 10992 9597 11081 11380 8570 9404 12467 10343 9089 

4 2 10865 10400 9168 8781 8938 11446 9819 8320 
5 1 12523 12621 9524 10241 10419 10168 11080 10964 9755 
5 2 11846 11765 10093 8991 9235 9570 10599 11581 9508 

6 1 12059 10406 17080 10793 10347 15402 11925 11238 15625 

6 2 12443 I00I6 17907 II021 13950 20918 11267 10799 15415 

7 1 11088 22742 37021 10680 31132 48486 12176 1252j6 37860 
7 2 11932 24185 42603 9876 26056 37240 10529 15897 39707 
8 1 29083 49430 28016 61633 13934 34376 62955 
8 2 29179 48128 26620 59107 70514 13940 36540 72204 

Table C-4 Stiffness (kPa) at 1800 Cycles for 50% Crushcd/50% Natural Specimens 

Asphalt 
Content ("/o) 

Specimen 

ID 

9.5C 12.5C 19C 9.5D 12.SD 19D 9.5F 12.5F 19F 

4 1 388216 354624 386411 349868 398876 418380 352809 374877 405941 

4 2 374014 406015 354591 390869 404302 338577 362134 412633 

5 1 363417 351161 381981 334944 365511 383481 323646 344790 377947 

5 2 335309 350521 380988 355443 365072 368528 339323 335309 374175 

6 1 313511 345495 369912 330469 358041 335971 345752 329021 342666 

6 2 322145 348370 348939 315462 345681 318580 291142 333774 344277 

7 1 316974 306785 293081 314955 288934 286673 288485 306496 279561 

7 2 325316 294156 280845 312263 290079 268051 298558 276761 270776 

8 I 261861 256207 260710 239651 291568 259570 254449 

8 2 260710 258664 256429 249108 255986 285006 252931 255986 
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Table C-5 Accumulated Axial Microstrain at 1800 Cycles for Manufactured Fine-Natural Coarse Specimens 

Asphalt 

Content (%) 

Spccimcn 

ID 
9.5C 12.5C 19C 9.5D I2.5D 19D 9.5F 12.5F 19F 

4 1 10992 14524 14811 9743 11038 13235 7943 10736 10411 

4 2 19698 12385 10127 11019 13669 8179 10473 10171 

5 1 12523 12675 19088 11731 11149 11847 8603 12901 11241 

5 2 11846 12025 14177 8906 11532 8338 12513 11036 

6 1 12059 12032 15024 9098 10358 11988 8837 11367 11422 

6 2 12443 11291 16792 9062 9719 12137 8707 11137 12515 

7 I 11088 18469 33259 10618 24262 26485 9097 12201 . 17099 

7 2 11932 20216 31923 10224 24004 28121 9818 11012 14190 

8 1 29083 43253 22862 41988 52038 9527 21456 30816 

8 2 29179 40346 24057 42817 48077 9987 15296 34341 

Table C-6 Stiffness (kPa) at 1800 Cyclcs for Manufactured Fine-Natural Coarse Specimens 

Asphalt 
Content (%) 

Specimen 
ID 

9.5C I2.5C I9C 9.5D I2.5D I9D 9.5F 12.5F I9F 

4 1 388216 377686 412626 361395 382853 389379 358100 370424 414285 

4 2 349788 413200 376690 398723 418878 375609 385368 397692 

5 1 363417 362798 354466 371302 380731 375966 367831 371302 362894 

5 2 335309 363676 372256 372634 381214 359033 374426 387395 

6 1 313511 373192 383984 382522 388335 377065 360976 357093 402562 

6 2 322145 368099 380493 368166 370860 341468 356841 351386 372256 

7 I 316974 337145 317183 371790 326621 345088 352190 345681 356423 

7 2 325316 323734 315711 349868 335601 341468 344311 350113 354697 

8 1 261861 285827 301819 298179 294042 337145 311320 315626 

8 2 260710 291156 308087 285003 297283 332355 323542 308408 
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Table C-7 Accumulated Axial Microstrain at 1800 Cycles for 100% Natural Specimens 

Asphalt 

Content (%) 

Spccimcn 

ID 
9.5C 12.5C 19C 9.5D 12.5D 19D 9.5F 12.5F 19F 

4 1 10758 14403 15315 12607 9863 12183 14351 11907 14218 

4 2 J2396 12273 16147 12489 9582 9667 ^80 J 5004 17262 

5 1 10891 12107 11832 12321 12191 13035 14677 13738 13489 

5 2 lOIOI 12526 13073 13174 12194 11623 19689 11222 14664 

6 1 18232 II02I 21302 12779 17131 21202 19519 15176 18905 

6 2 16199 11583 23555 14461 25865 26812 19767 14962. 15966 

7 1 27495 27204 44417 44819 55150 73594 21338 43538 57230 

7 2 29094 25779 38136 36508 61953 79839 19788 57563 50712 

8 1 56096 43946 90560 46030 76767 

8 2 65151 59604 88263 42281 84825 

Table C-8 Stiffness (kPa) at 1800 Cycles for 100% Natural Specimens 

Asphalt 
Content (%) 

Specimen 
ID 

9.5C 12.5C I9C 9.5D 12.SD 19D 9.5F 12.5F I9F 

4 1 331339 350419 345967 313456 362894 339460 306315 353611 327944 

4 2 345858 319707 361054 316031 344790 365891 291961 321981 310946 

5 1 310327 297692 332931 324899 330388 323190 346907 320448 343787 

5 2 323172 297405 337534 343703 325457 345088 256940 317769 327470 

6 1 264900 309687 306756 331495 306813 300697 248452 291442 282291 

6 2 273445 286912 275234 290519 280423 287546 262864 297717 295342 

7 1 267019 248691 251269 238979 232146 209970 244851 237656 237350 

7 2 239742 256969 274069 235790 225790 224594 261483 200532 245197 

8 1 213258 223343 194690 209583 213108 

8 2 194316 210068 222625 224101 199070 
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